
Gtk Bindings for R

Duncan Temple Lang

November 15, 2004

In this document, we present tbe basics of the Gtk package and how to use it. The idea is to determine
a programming interface and then use this to automatically generate the code.

1 Introduction

One should be aware that we need to further extend and generalize the R event loop to accomodate other
the event queues from other libraries such as Tk, Gtk, Qt, etc. This is being investigated. In the meantime,
most things will work properly in the“standard”R on both Windows and Unix except for timeouts, idle tasks
and tooltips (which use timers). On Unix, if one configures and runs the Gnome interface (R --gui=GNOME),
all will behave correctly. Similarly, if one runs R within another Gtk-enabled application which uses the
Gtk event loop handlers, things will be fine. Two examples of this are GGobi and Gnumeric in which R has
been embedded. Additionally, one can write a simple application in C that starts the R engine (within the
same process), reads an R initialization script to create the GUI and register callbacks, timers, etc. and then
uses the Gtk event loop. An example is given in this RGtk package. Or an even simpler version is to call
gtkMain() at the end of one’s profile script.

2 The Basic Overview

Gtk is a toolkit for creating graphical user interfaces. It provides two basic types of interaction.

Widgets A large collection of components that can be used to create the GUI. These include common
primitive elements such as buttons and labels, menu items, text widgets, drawing areas, top-level
windows, . . . with which one can make more complex composite widgets such as dialogs, calendars, file
selection interfaces, etc.

In addition to the low-level, action widgets, there are also container widgets whose task is to house
and manage other widgets. The different types of container widgets manage the space they have for
their child widgets in different ways to give different visual effects, specifically when a window/widget
is resized. Container widgets include notebooks with tabs for each separate “page”; scrolled windows
which provide horizontal and vertical scrollbars that get associated with and control the visibility of a
child widget; different “packing” widgets such as a table, a box, a menu and menu bar, . . ..

Callbacks Also, Gtk provides a way to associate handlers or actions with particular events on these different
components so that one can give the GUI its behavior. In the case of R, these callbacks are given
primarily as S functions. These are called when the event occurs with arguments that identify the
details of the event, including the particular widget in which the event happened.

When developing a GUI, typically one first creates the visible part, i.e. the collection of different widgets.
We do this by creating instances of the different Gtk widget classes, creating the basic elements and “adding”
them to the desired container widget. Having created the elements, we then display or “show” the top-level
element, be it a top-level window or merely a container to be added to an existing top-level container. There
are a variety of different ways to learn about what different types of Gtk widgets are available to be used in
a GUI.

1



November 15, 2004 overview.nw 2

• One can look at the static/pre-processed Gtk documentation at http://developer.gnome.org/doc/
API/gtk/index.html, which has pages on each of the different widgets in each of the different distri-
butions. Your system should have these widgets, but may a) have a different version of Gtk and so be
slightly different, and b) have additional widgets that extend the basic Gtk and that will not show up
in the Gtk Web pages.

• One can dynamically discover the names of the Gtk classes and widgets known to R via the (S)
commands

library(RGtk)
.GtkClasses

.GtkClasses gives a list of all the Gtk classes that were available when the RGtk package was installed.
That too might have changed or not include additional Gtk widgets.

One can also browse the collection of Gtk classes using the function showGtkInheritance() in the
examples/ directory:

source(system.file("examples", "getHierarchy.S", package="RGtk"))
showGtkInheritance()

This allows one to examine the inheritance structure of the Gtk classes and explore how the different
widgets are related to each other. Also, one can use this as a definitive guide for finding out

– the callbacks and their argument types,

– the properties that can be read and/or modified to control a widget instance

that are supported by a particular widget type.

hierarchy.jpg

Figure 1: Interactive Gtk class hierarchy viewer

Having created the physical display for the GUI by creating and arranging the different widgets, we next
register the different callback functions with the particular widgets and specifically with the different events
of interest. Again, one must learn which events are associated by which type of widget, and when and
how the handler will be called. One can use the different documentation sources above for this purpose. In
general, each callback function will be invoked with at least one argument: the Gtk object in which the event
occurred. Callbacks for different events may provide additional arguments which provide more information
about the particulars of the event. For example, when a button is released in a widget, the button-release-
event passes the widget and also a GdkEventButton instance which gives information about which button
was released, etc.

In addition to the arguments provided by Gtk, one can also associate an S object with a widget and
event and have this passed to the callback function as an argument. By associating different objects with
different widgets, one can use the same callback function. That function can implement different behavior
based on the additional argument, and using R’s lexical scoping one can event modify the S object passed
as an additional argument.

When we create functions or progams to create GUIs, we clearly can associate the callbacks with the
widgets as soon as we create them. We do not have to separate the creation of the physical display with the
actions. However, such a division can be useful in terms of being able to easily adapt and also re-use GUIs
as the physical display needs to be changed.

In the next few sections, we will describe how we can implement the very basic and often-used Hellow
World to illustrate the essential concepts in the RGtk package. This is a very simple GUI which presents a
button in its own window. When the user clicks the button, we print a message on the console.

http://developer.gnome.org/doc/API/gtk/index.html
http://developer.gnome.org/doc/API/gtk/index.html


November 15, 2004 overview.nw 3

3 Creating Gtk Objects

As we saw above, one starts creating a GUI by instantiating different Gtk objects. In the case of the “Hello
world” application, we need to create i) the top-level window, and ii) the button which the user clicks. We
create the window using the gtkWindow() function

win <- gtkWindow(show = FALSE)

This creates an instance of the GtkWindow class. Generally, the S language constructor function for a Gtk
class named Gtk<Class> is given by gtk<Class>(), i.e. replace the capital G starting the word with a lower
case ‘g’.

Note that the constructor functions for each class that extends GtkWidget have an optional show argu-
ment. This controls whether the widget is made ready for showing immediately or if this must be done by
the programmer at a later time. The advantage of deferring this is usually a marginal gain in efficiency.
Hence, the default is T. One need only prohibit the top-level container, e.g. the window in this example,
from being shown and then none of the sub-widgets will be displayed.

We can invoke methods on the Gtk objects to query or modify their state. For example, we can set the
title for the frame of the window using the underlying C-level routine gtk_window_set_title() provided
by the Gtk libraries. We do this in S via the command

gtkWindowSetTitle(win, "Hello world test")

There are several things to note here. Firstly, we use a different naming convention than Gtk’s C-level API.
Specifically, we eliminate the underscores ( ) and capitalize all but the first word (i.e. the next letter after
the ). Secondly, we pass the Gtk object on which we are operating as the first argument. Thirdly, the
type of the second argument is defined by the underlying C routine and is a string. This corresponds to a
character vector of length 1 in S.

The case of gtkWindowSetTitle() is quite simple. We started with an object of class GtkWindow in R
(created using the S constructor) and then invoked the function gtkWindowSetTitle() for that same class.
But what about, for example, the general functions to show or hide a widget, get its parent widget, etc.
These apply to all GtkWidget objects, and not just the GtkWindow objects. Accordingly, the S interface uses
the names that correspond to the C-level API and are prefixed by gtkWidget...(), rather than gtkWindow().
This makes it hard to remember the precise name of the function one wants to call since it depends on the
inheritance or class hierarchy of the Gtk classes.

To make things simpler, we allow one to use a more Java/C++ style that allows users to invoke methods
on an object and leave the S engine to determine the precise name to use. Specifically, we use the $ operator
on the object followed by the name of the method to identify the function. Specifically, one can invoke from
S a method on an underlying Gtk object, say g usin the form

g$MethodName(arg1, arg2)

This eliminates the need to remember for which class the method is defined and hence the prefix. Also this
form of invocations inserts the target object, g, as the first argument in the call to the real S function being
called and so reduces typing.

An example will make things clear. Consider again setting the title of the window. Rather than using
gtkWindowSetTitle(), we can use the command

win$SetTitle("Hello world test")

This looks for the appropriate function given the class and parent classes of win and then invokes the“nearest”
function. This corresponds to the command

gtkWindowSetTitle(win, "Hello world test")

above, but is easier for the user and is also more robust to changes in the class hierarchy and C-leve API.
There is a marginal penalty in computational performance, but this may disappear in the future and is also
not likely to be a serious issue a) when creating the GUI, b) given the overhead in setting up callbacks to S
functions.



November 15, 2004 overview.nw 4

We can now continue with our “Hello world” example. We have created the window and set its title
and hence seen how to create Gtk objects and invoke methods. And so creating the button becomes quite
simple. We choose which the appropriate Gtk class – GtkButton – and find the appropriate constructor.
There are two constructors in the C-level API for this class: one that takes no arguments and another that
takes a string to display as the text in the button. In S, these two constructors map to a single constructor
function, whose name is the name of the class suitably (de-)capitalized, gtkButton(). If one calls it with no
arguments, the first C-level constructor is called. Alternatively, if one gives a character vector of length 1
as the first argument, the second version is called. More generally, the R interface to Gtk attempts to map
the constructor routines into a single S function that can determine which C routine to call based on the
number and/or type of the arguments. For the most part, this is quite simple and works effectively.

In our example, we specify text for the button’s display and so call

btn <- gtkButton("Say ‘Hello World’")

Next we put the button into the top-level window. The latter is a GtkContainer object and has a default
mechanism for placing children widgets. Since this is the only widget we will display in the window, we
don’t have to worry about how to aportion space between different widgets, etc. All we need do is invoke
the Add() method on the window, giving it the child widget which is the button.

win$Add(b)

When we create the button, we did not provide a value for the show argument and so the button is
potentially visible. To actually see it, however, we need to show the top-level widget, i.e. the window. We
do this by explicitly calling its Show() method.

win$Show()

We might chose to specify the size of window before showing (or even afterwords). We could do this
using the SetUsize() method, as in

win$SetUsize(300, 300)

4 Callbacks

At this point, we have created a Gtk GUI that one can see on the screen and can even interact with by
clicking on the button. The next step is to make it do something when we click on the button, and this is
where we look at callbacks.

The usual types of events are user interactions such as clicking on a button, dragging the thumb of a slider,
moving the mouse over a drawing area, etc. Other types of events might be less visible and more abstract
such as text being pushed or popped onto a status bar, a new data set being created, and so on. Basically,
each type of event is associated with a Gtk object in which it “occurs”. A Gtk object can support different
types of events, and events in different objects are treated independently. One creates and customizes an
application by connecting different pieces of code that are executed when particular Gtk objects raise/emit
particular events.

In our example, we want to execute a simple piece of S code that is executed when the user clicks on
the button. The code simply writes the string "Saying hello from the button" to the console via the
cat() function. To arrange this, we can look at the different signals that the button supports. (Of course, we
chose the GtkButton class because it provided the appropriate signal, so this seems like we are going round
in circles. In general, knowing the widget to use and appropriate signal is the trick to using any toolkit.)
Using the help pages for Gtk or the hierarchy viewer above, we can find out that the button supports 5
diffferent types of signals itself, and inherits many others from its ancestor classes (GtkBin, GtkContainer,
GtkWidget and GtkObject). These signal names are pressed, released, clicked, enter and leave. The one we
are interested in is clicked.

We specify our callback for the particular button using the method AddCallback(). We specify the name
of the signal (i.e. clicked) and an invokable S object which will be called when the signal occurs:



November 15, 2004 overview.nw 5

btn$AddCallback("clicked", quote(cat("Saying hello from the button\n")))

Now, when you click on the button, the string will be printed on the console.
The code that is to be called when the event occurs can be an S expression or call, or a function. If

it is an expression or call, then it is evaluated when the event occurs. One typically creates such callable
objects using quote(), expression() or substitute(). Each of these types of callbacks is evaluated as a top-
level expression and one is presumably interested in its global side effects, such as changing the value of a
session-wide variable, writing to a file or the console, or updating one or more graphics devices.

If the callback is a function, then it is invoked slightly differently. There is more information available
to the callback, specifically, the arguments that are made available at the C level by the Gtk API. These
are passed onto the S function. This collection of arguments always includes the Gtk object for which the
signal is being emitted. Many signals also provide additional values that parameterize the event and allow
the callback to be written generally but parameterized by the widget or other event-specific values. These
values are converted to S objects using the basic conversion mechanism described in ??. In addition to the
event-specific values passed from Gtk, one can also specify S objects that Gtk remembers and passes to the
function when it is called. Again, this allows one to parameterize general S functions to act on the specifics
of the event. We’ll look at how this can be used in ??.

Note that we added the callback after the button was created and visible. This is not necessary and we
can add it before the top-level window is shown. However, it does illustrate that we can dynamically add
callbacks at any time. Indeed, we can add multiple callbacks to the same Gtk object, and even for the same
signal. For example, let’s add a second that prints And again.

id <- btn$AddCallback("clicked", quote(cat("And again\n")))

Go ahead and click on the button now and see that two lines of output are produced.
And, of course, if we can dynamically add callbacks, we must also be able to remove them at any time.

To do this, we use the DisconnectCallback() method for the Gtk object. We give it the identifier for the
registered callback that we returned in the call to AddCallback(). So to un-register the second callback, we
issue the S command

btn$DisconnectCallback(id)

Again, click on the button and you should get only one line of output, specifically Saying hello from the
button.

4.1 Why Use Functions as Callback Actions

To be good citizens, we will register callbacks that catch the destroy event on the top-level window so that
we can detect when a user kills the window using the window manager rather than programmatically.

win$AddCallback("destroy-event", function(w, ev) cat("Being destroyed\n"))

5 User-Data in Callbacks

Callbacks:UserData As we mentioned above, when a function callback is invoked it is passed values that
provide information about the specific event that triggered the callback. For example, when a button is
clicked, the callback

6

6.1 Enumerations and Flags

Enumerated types and flags are symbolic constants that are used to identify different states or combinations
of states. In R, we represent these as named integers. The intent is that the user will provide the name
(or names for flags) and not a simple integer value. So, for example, when specifying the type of window in



November 15, 2004 overview.nw 6

a call to gtkWindowNew() we can use any of the names from the GtkWindowType vector representing the
enumeration:

?? 〈 ??〉≡
> GtkWindowType
toplevel dialog popup

0 1 2

Since this is an enumeration, we specify just one of these values, as in
?? 〈 ??〉+≡

> gtkWindowNew("toplevel")

When a flag value is expected, we can combine different values together. Since we can OR (|) names together,
we need an alternative syntax. For this, we use a simple character vector containing the names of the flag
elements. As an example, consider the display options for controlling the appearance of the calendar widget.
The GtkCalendarDisplayOptions is a named integer vector giving the different names for the flag values. If
we weant to have weeks start on a monday and also show week numbers, we can do this as

?? 〈 ??〉+≡
> gtkCalendarDisplayOptions(cal, c("week-start-monday","show-week-numbers"))

To activate all options, we can use
?? 〈 ??〉+≡

gtkCalendarDisplayOptions(cal, names(GtkCalendarDisplayOptions))

The calendar can be create and display using the following code
?? 〈 ??〉+≡

cal <- gtkCalendar()
gtkCalendarDisplayOptions(cal, c("week-start-monday","show-week-numbers"))
w <- gtkWindow()
w$Add(cal)

Using names guarantees the validity of the value as it is resolved and checked at run time. However, to
guard against erroneous values, we have C-level code that checks an integer value is within the appropriate
set of C-level values and returns an object representing that symbolic value.

This multiple level of checking may seem inefficient to some. For each enumeration and flag type, one can
directly compute a value and then store that value. There is a ‘map’ function for each enumeration or flag
type that maps the specified value into a valid value of the appropriate type. For example, in the case of the
GtkWindowType, there is a function mapGtkWindowType(). Similarly, for calendar display options, there is
a function named mapGtkCalendarDisplayOptions(). One can call these with the names of the values and
get the actual value.

?? 〈 ??〉+≡
> mapGtkWindowType("toplevel")
GTK_WINDOW_TOPLEVEL

0
attr(,"class")
[1] "GtkWindowType" "enum"
> mapGtkCalendarDisplayOptions( names(GtkCalendarDisplayOptions))
[1] 31



November 15, 2004 overview.nw 7

One can use this in subsequent calls and this will bypass the S- and C-level verification. This is because
each mapping function checks whether the argument is of the appropriate class. If it is, it assumes the value
is correct. One can cheat, but this is not a good idea, especially for portability.

One can note the fact that the name toplevel is converted to GTK_WINDOW_TOPLEVEL in the value returned
by the enumeraton. This is the C-level name for the enumeration. It can be used as a synonym for the value.
In other words, toplevel and GTK_WINDOW_TOPLEVEL are the same. And indeed, for every enumeration or
flag we have both a sets of element names available. The local version is available as described above by
giving the name of type, e.g. GtkWindowType and GtkCalendarDisplayOptions. Prefixing the name with a
. gives the alternative version with the longer, internal names. Use whichever form you desire. Those who
write Gtk code in other languages may be familiar with the internal names. The local names are shorter.

7 Basic Methods

As we have seen, the visual part of a GUI is created by packing widgets into containers, and building a
hierarchy of interface components. In many cases, we will have explicitly created the different elements in
S and can make them available to other parts of the application which need to access them directly, e.g. to
register a callback, set a property, etc. In other cases, we may not have the relevant Gtk object as an S
variable. For example, if we create a composite widget such as a dialog or a color wheel, we will not have
access to the internal buttons or slider within these higher-level widgets. However, it may be convenient to
dynamically access them by navigating the tree of widgets. For example, given the dialog, we can ask for
its work area and action area (the buttons) using properties. Given either of these, we can ask for its child
widgets and recursively access the different sub-widgets within the tree. Similarly, given a widget, we can
access its parent widget and traverse “up” the tree.

The functions gtkParent() and gtkChildren() can be used to navigate the widget hierarchy. gtkParent()
is used when we want to go “up” the hierarchy to access the container widget whne we have a sub-widget.
One common case is in a callback when we want to, for example, access the top-level window that contains
the widget associated with the callback. To do this, we can “walk up” the hierarchy until we either find a
GtkWindow object or find a widget whose parent widget is NULL.

?? 〈Get Window ??〉≡
gtkGetWindow <-
function(w)
{
while(!is.null(w) && !inherits(w, "GtkWindow") ) {
w <- gtkParent(w)

}

w
}

In our “Hello world” example, we can find the top-level window given the button using
?? 〈 ??〉+≡

gtkGetWindow()

Note that if we really want the top-most container, the function gtkWidgetGetToplevel() will do the same
job, but entirely within C code.

To walk “down” the tree, we use gtkChildren(). For example, given the top-level window in the “Hello
world” example, we can locate button using the S command

?? 〈 ??〉+≡
gtkChildren(win)[[1]]



November 15, 2004 overview.nw 8

As one can see, gtkChildren() returns a list with an element for each child. The precise order in which the
child widgets appear depends on the container widget, the order in which the widgets were added/packed
into the container, etc. In other words, it is context-specific.

As simple syntactic sugar, one can use S’s subsetting on a container widget to access the children indi-
vidually by index. Specifically, we can get the i-th child from a GtkContainer widget g as

?? 〈 ??〉+≡
g[[i]]

The example above can be given more simply as
?? 〈 ??〉+≡

win[[1]]

Of course, this notation is also used to access properties within a GtkObject, but where the index is given as
a string. To make code more readable, use gtkChildren().

8 Forcing the Event Loop

All functions that involve a call to C code have a .flush argument. This is expected to be a logical value
and controls whether the routine gdk_flush() is called at the end of the C routine to ensure that events are
processed as soon as possible. This is T by default. The function .GtkCall() is the intermediate layer that
sits above the real call to the C routine via the C.Call().

One can also flush the event queue manually by calling the function gdkFlush().

9 Accessing Object Properties

Each GtkObject instance supports has values that are accessible by name. The collection of properties can
be accessed via the names() function and this makes the object look like a list of named values. These
properties also posses a hierarchical characteristic.

Each property has a specific type that can be assigned to it. Some of these values are are writeable, while
most are readable. Additionally, the collection for a given instance is made up of combining the properties
from the different classes from which the instance is derived. One can discover all this information using the
function gtkObjectGetArgInfo().

?? 〈 ??〉+≡
b <- gtkButton("Some text")
names(obj)
b[["label"]]
b[["label"]] <- "A Replacement string"

?? 〈 ??〉+≡
gtkObjectGetArgInfo(b)

10 Setting Callbacks

We use gtkAddCallback() to register an S function that is to be called when a particular Gtk event occurs
on a specific object.



November 15, 2004 overview.nw 9

11 Timers & Idle Tasks

gtkTimeoutAdd() and gtkTimeoutRemove() provide a convenient way to register S functions to be called
after a specified interval of time. If the function returns T, the task is rescheduled to run after the same
interval. Alternatively, returning F discards the timer. One can programmatically remove the timer using
gtkTimeoutRemove() and the value returned from gtkTimeoutAdd().

By default, the function is called with no arguments. However, one can arrange to have it passed a value
by specifying the object as the data argument in the call to gtkTimeoutAdd(). This is similar to the data
argument for gtkAddCallback().

Idle tasks are run when there are no other events to process in the Gnome event queue. These can be used
to perform non-urgent background tasks. The interface is very similar to timeout functions. One registers
an idle task with gtkAddIdle() and this returns an identifier for the tasks. One can remove the task using
gtkRemoveIdle().

12 Reflectance

When we create an Gtk object, we assign the appropriate classes to the resulting S object. However, in
some cases, we might get acccess to an object that is not created by us and does not have the appropriate
classes. In order to have full access to this object, we can compute and assign the appropriate classes to
an object using gtkObjectGetClasses(). We can also compute just the immediate name of the object’s type
using gtkObjectGetTypeName(). We can also get a reference to the underlying GtkType using the function
gkObjectGetType().

While in most cases, we know the names of the different signals for a widget to which we might want
to attach or connect a callback function, there are situations when we might want to ask for the names
of the available signals. The function gtkObjectGetSignals() returns the available signals for an instance
of a Gtk class. We can also ask for the signals for a class by giving its name or type to the function
gtkTypeGetSignals().

> sig <- gtkTypeGetSignals("GtkButton"){\tt{}"pressed"}
> gtkSignalGetInfo(sig)
$signal
pressed

60
attr(,"class")
[1] "GtkSignalId"

$parameters
list()

$returnType
void

1
attr(,"class")
[1] "GtkType"

$isUserSignal
[1] FALSE

$runFlags
[1] 1

$objectType
GtkButton



November 15, 2004 overview.nw 10

40213
attr(,"class")
[1] "GtkType"

13 Styles and Themes

14 OOP-like methods

One can also call functions for a particular class of objects using the \$notation. We basically call a method
for the instance and specify the object on which to operate as the left hand side of the \$operator.

w <- gtkWindowNew()
w$Show()

Such methods map to the function corresponding to piecing the different elements together to give gtkClass MethodName.
The Class value is computed from the list of classes for the object and the first for which such a function
exists.


