NIPY logo

Site Navigation

NIPY Community

Table Of Contents

Next topic

neurospin.spatial_models.hroi

This Page

neurospin.spatial_models.hierarchical_parcellation

Module: neurospin.spatial_models.hierarchical_parcellation

Functions

nipy.neurospin.spatial_models.hierarchical_parcellation.hparcel(Pa, ldata, anat_coord, nbperm=0, niter=5, mu=10.0, dmax=10.0, lamb=100.0, chunksize=100000.0, verbose=0)

Function that performs the parcellation by optimizing the sinter-subject similarity while retaining the connectedness within subject and some consistency across subjects.

Parameters :

Pa: a Parcel structure that essentially contains :

the grid position information and the individual masks

anat_coord: array of shape(nbvox,3) which defines the position :

of the grid points in some space

nbperm=0: the number of times the parcellation and prfx :

computation is performed on sign-swaped data

niter=10: number of iterations to obtain the convergence of the method :

information in the clustering algorithm

mu=10., float, relative weight of anatomical information :

nipy.neurospin.spatial_models.hierarchical_parcellation.optim_hparcel(Ranat, RFeature, Feature, Pa, Gs, anat_coord, lamb=1.0, dmax=10.0, chunksize=100000.0, niter=5, verbose=0)

Core function of the heirrachical parcellation procedure.

Parameters :

Ranat: array of shape (n,3): set of positions sampled form the data :

RFeature: array of shape (n,f): assocaited feature :

Feature: list of subject-related feature arrays :

Pa : parcellation instance that is updated

Gs: graph that represents the topology of the parcellation :

anat_coord: arrao of shape (nvox,3) space defining set of coordinates :

lamb=1.0: parameter to weight position :

and feature impact on the algorithm

dmax = 10: locality parameter (in the space of anat_coord) :

to limit surch volume (CPU save)

chunksize=1.e5 not used here (to be removed) :

niter = 5: number of iterations in teh algorithm :

verbose=0: verbosity level :

Returns :

U: list of arrays of length nsubj :

subject-dependent parcellations

Proto_anat: array of shape (nvox) labelling of the common space :

(template parcellation)

nipy.neurospin.spatial_models.hierarchical_parcellation.perm_prfx(Pa, Gs, F0, ldata, anat_coord, nbperm=100, niter=5, dmax=10.0, lamb=100.0, chunksize=100000.0)

caveat: assumes that the functional dimension is 1