Table Of Contents

Previous topic

modalities.fmri.fmristat.utils

Next topic

modalities.fmri.hrf

This Page

modalities.fmri.functions

Module: modalities.fmri.functions

Inheritance diagram for nipy.modalities.fmri.functions:

This module defines some convenience functions of time.

Stimulus: a class to implement square-wave protocol based on
a pair of sequences [times,values]

PeriodicStimulus: periodic Stimulus

Events: subclass of Stimulus to which events can be appended

DeltaFunction: an approximate delta function

SplineConfound: generate natural cubic splines with given knots

InterpolatedConfound: based on a sequence of [times, values], return
a linearly interpolated confound

Classes

DeltaFunction

class nipy.modalities.fmri.functions.DeltaFunction(start=0.0, dt=0.02)

A square wave approximate delta function returning 1/dt in interval [start, start+dt).

__init__(start=0.0, dt=0.02)
Parameters:
start : float

Beginning of delta function approximation.

dt : float

Width of delta function approximation.

Events

class nipy.modalities.fmri.functions.Events(name='stimulus', times=None, values=None)

Bases: nipy.modalities.fmri.functions.Stimulus

TODO

__init__(name='stimulus', times=None, values=None)
Parameters:
fn : TODO

TODO

times : TODO

TODO

values : TODO

TODO

append(start, duration, height=1.0)

Append a square wave to an Event. No checking is made to ensure that there is no overlap with previously defined intervals – the assumption is that this new interval has empty intersection with all other previously defined intervals.

Parameters:
start : TODO

TODO

duration : TODO

TODO

height : float

TODO

Returns:

None

InterpolatedConfound

class nipy.modalities.fmri.functions.InterpolatedConfound(times=None, values=None, name='confound')
__init__(times=None, values=None, name='confound')
Parameters:

times : TODO TODO values : TODO TODO name : TODO TODO

PeriodicStimulus

class nipy.modalities.fmri.functions.PeriodicStimulus(n=1, start=0.0, duration=3.0, step=6.0, height=1.0, name='periodic stimulus')

Bases: nipy.modalities.fmri.functions.Stimulus

TODO

__init__(n=1, start=0.0, duration=3.0, step=6.0, height=1.0, name='periodic stimulus')
Parameters:
n : int

TODO

start : float

TODO

duration : float

TODO

step : float

TODO

height : float

TODO

SplineConfound

class nipy.modalities.fmri.functions.SplineConfound(df=4, knots=None, window=[, 0, 1])

A natural spline confound with df degrees of freedom.

__init__(df=4, knots=None, window=[, 0, 1])
Parameters:
df : int

TODO

knots : TODO

TODO

Stimulus

class nipy.modalities.fmri.functions.Stimulus(name='stimulus', times=None, values=None)

TODO

__init__(name='stimulus', times=None, values=None)
Parameters:
fn : TODO

TODO

times : TODO

TODO

values : TODO

TODO

Function

nipy.modalities.fmri.functions.window(f, r)
Decorator to window a function between r[0] and r[1] (inclusive)