Table Of Contents

Previous topic

neurospin.utils.simul_2d_multisubject_fmri_dataset

Next topic

neurospin.utils.threshold

This Page

neurospin.utils.smoothing

Module: neurospin.utils.smoothing

Routine for smoothing data using diffusion on graphs. Works well only for small kernels.

Mybe should be abandoned

Author : Bertrand Thirion, 2006-2009

Functions

nipy.neurospin.utils.smoothing.cartesian_smoothing(ijk, data, sigma)
Smoothing data on a(n uncomplete) cartesian grid INPUT: -ijk : list of the positions, which is assumed to be an (n,3) int array it is typically returned by transpose(numpy.where()) - data : an array of data sampled from the grid size(ijk.shape[0],d) where d is the datas dimension -sigma : the kernel parameter OUTPUT - data, which is the smoothed data
nipy.neurospin.utils.smoothing.check_smoothing()