|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectweka.classifiers.bayes.net.search.SearchAlgorithm
weka.classifiers.bayes.net.search.global.GlobalScoreSearchAlgorithm
public class GlobalScoreSearchAlgorithm
This Bayes Network learning algorithm uses cross validation to estimate classification accuracy.
Valid options are:-mbc Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.
-S [LOO-CV|k-Fold-CV|Cumulative-CV] Score type (LOO-CV,k-Fold-CV,Cumulative-CV)
-Q Use probabilistic or 0/1 scoring. (default probabilistic scoring)
Field Summary | |
---|---|
static Tag[] |
TAGS_CV_TYPE
the score types |
Constructor Summary | |
---|---|
GlobalScoreSearchAlgorithm()
|
Method Summary | |
---|---|
double |
calcScore(BayesNet bayesNet)
performCV returns the accuracy calculated using cross validation. |
double |
calcScoreWithExtraParent(int nNode,
int nCandidateParent)
Calc Node Score With Added Parent |
double |
calcScoreWithMissingParent(int nNode,
int nCandidateParent)
Calc Node Score With Parent Deleted |
double |
calcScoreWithReversedParent(int nNode,
int nCandidateParent)
Calc Node Score With Arrow reversed |
double |
cumulativeCV(BayesNet bayesNet)
CumulativeCV returns the accuracy calculated using cumulative cross validation. |
java.lang.String |
CVTypeTipText()
|
SelectedTag |
getCVType()
get cross validation strategy to be used in searching for networks. |
boolean |
getMarkovBlanketClassifier()
|
java.lang.String[] |
getOptions()
Gets the current settings of the search algorithm. |
boolean |
getUseProb()
|
java.lang.String |
globalInfo()
This will return a string describing the search algorithm. |
double |
kFoldCV(BayesNet bayesNet,
int nNrOfFolds)
kFoldCV uses k-fold cross validation to measure the accuracy of a Bayes network classifier. |
double |
leaveOneOutCV(BayesNet bayesNet)
LeaveOneOutCV returns the accuracy calculated using Leave One Out cross validation. |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options |
java.lang.String |
markovBlanketClassifierTipText()
|
void |
setCVType(SelectedTag newCVType)
set cross validation strategy to be used in searching for networks. |
void |
setMarkovBlanketClassifier(boolean bMarkovBlanketClassifier)
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
void |
setUseProb(boolean useProb)
|
java.lang.String |
useProbTipText()
|
Methods inherited from class weka.classifiers.bayes.net.search.SearchAlgorithm |
---|
buildStructure, initAsNaiveBayesTipText, maxNrOfParentsTipText, toString |
Methods inherited from class java.lang.Object |
---|
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Field Detail |
---|
public static final Tag[] TAGS_CV_TYPE
Constructor Detail |
---|
public GlobalScoreSearchAlgorithm()
Method Detail |
---|
public double calcScore(BayesNet bayesNet) throws java.lang.Exception
bayesNet
- : Bayes Network containing structure to evaluate
java.lang.Exception
- whn m_nCVType is invalided + exceptions passed on by updateClassifierpublic double calcScoreWithExtraParent(int nNode, int nCandidateParent) throws java.lang.Exception
nNode
- node for which the score is calculatenCandidateParent
- candidate parent to add to the existing parent set
java.lang.Exception
- if something goes wrongpublic double calcScoreWithMissingParent(int nNode, int nCandidateParent) throws java.lang.Exception
nNode
- node for which the score is calculatenCandidateParent
- candidate parent to delete from the existing parent set
java.lang.Exception
- if something goes wrongpublic double calcScoreWithReversedParent(int nNode, int nCandidateParent) throws java.lang.Exception
nNode
- node for which the score is calculatenCandidateParent
- candidate parent to delete from the existing parent set
java.lang.Exception
- if something goes wrongpublic double leaveOneOutCV(BayesNet bayesNet) throws java.lang.Exception
bayesNet
- : Bayes Network containing structure to evaluate
java.lang.Exception
- passed on by updateClassifierpublic double cumulativeCV(BayesNet bayesNet) throws java.lang.Exception
bayesNet
- : Bayes Network containing structure to evaluate
java.lang.Exception
- passed on by updateClassifierpublic double kFoldCV(BayesNet bayesNet, int nNrOfFolds) throws java.lang.Exception
bayesNet
- : Bayes Network containing structure to evaluatenNrOfFolds
- : the number of folds k to perform k-fold cv
java.lang.Exception
- passed on by updateClassifierpublic boolean getUseProb()
public void setUseProb(boolean useProb)
useProb
- : use probabilities or not in accuracy estimatepublic void setCVType(SelectedTag newCVType)
newCVType
- : cross validation strategypublic SelectedTag getCVType()
public void setMarkovBlanketClassifier(boolean bMarkovBlanketClassifier)
bMarkovBlanketClassifier
- public boolean getMarkovBlanketClassifier()
public java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class SearchAlgorithm
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-mbc Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.
-S [LOO-CV|k-Fold-CV|Cumulative-CV] Score type (LOO-CV,k-Fold-CV,Cumulative-CV)
-Q Use probabilistic or 0/1 scoring. (default probabilistic scoring)
setOptions
in interface OptionHandler
setOptions
in class SearchAlgorithm
options
- the list of options as an array of strings
java.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class SearchAlgorithm
public java.lang.String CVTypeTipText()
public java.lang.String useProbTipText()
public java.lang.String globalInfo()
public java.lang.String markovBlanketClassifierTipText()
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |