| v

ERLANG

Kernel

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.
Kernel 5.1.1
April 4, 2017

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

April 4, 2017

1 Reference Manual

Ericsson AB. All Rights Reserved.: Kernel | 1

kernel

kernel
Application

TheKernel application hasall the code necessary to run the Erlang runtime system: file servers, code servers, and so on.

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. Kernel contains the following functional areas:

e Start, stop, supervision, configuration, and distribution of applications
* Codeloading

e Logging

» Error logging

* Globa name service

e Supervision of Erlang/OTP

* Communication with sockets

e Operating system interface

Error Logger Event Handlers

Two standard error logger event handlers are defined in the Kernel application. These are described in
error _| ogger(3).

Configuration

The following configuration parameters are defined for the Kernel application. For more information about
configuration parameters, seefileapp(4) .

browser_cnmd = string() | {MF, A}

When pressing the Help button in a tool such as Debugger, the help text (an HTML file Fi | e) is by default
displayed in a Netscape browser, which is required to be operational. This parameter can be used to change the
command for how to display the help text if another browser than Netscape is preferred, or if another platform
than Unix or Windows is used.

If set to astring Command, the command " Command Fi | e" isevaluated using os: cnd/ 1.

If set to amodule-function-argstuple, { M F, A}, thecal appl y(M F, [Fi | e| A]) isevaluated.
distributed = [Distrib]

Specifieswhich applicationsthat are distributed and on which nodesthey areallowed to execute. Inthisparameter:

e Distrib = {App, Nodes} | {App, Ti me, Nodes}

* App = aton()
« Time = integer()>0
e Nodes = [node() | {node(),...,node()}]

The parameter isdescribed in appl i cati on: | oad/ 2.
di st _aut o_connect = Val ue

Specifies when nodes are automatically connected. If this parameter is not specified, a node is aways
automatically connected, for example, when a message is to be sent to that node. Val ue is one of:

never
Connectionsare never automatically established, they must be explicitly connected. Seenet _ker nel (3) .

2 | Ericsson AB. All Rights Reserved.: Kernel

kernel

once

Connections are established automatically, but only once per node. If a node goes down, it must thereafter
be explicitly connected. Seenet _ker nel (3) .

perm ssions = [Perni
Specifies the default permission for applications when they are started. In this parameter:
e Perm = { Appl Nane, Bool }

 Appl Nane = atom()
e Bool = bool ean()

Permissions are described inappl i cati on: perm t/ 2.
error _| ogger = Val ue
Val ue isoneof:
tty
Installs the standard event handler, which prints error reportsto st di 0. Thisisthe default option.
{file, FileNane}

Installs the standard event handler, which prints error reports to file Fi | eName, where Fi | eNane isa
string.

fal se
No standard event handler is installed, but the initial, primitive event handler is kept, printing raw event
messagestotty.
si | ent
Error logging isturned off.
error_| ogger format_depth = Depth
Can be used to limit the size of the formatted output from the error logger event handlers.

Note:

This configuration parameter was introduced in OTP 18.1 and is experimental. Based on user feedback, it
can be changed or improved in future rel eases, for exampl e, to gain better control over how to limit the size of
the formatted output. We have no plans to remove this new feature entirely, unlessit turns out to be useless.

Dept h is a positive integer representing the maximum depth to which terms are printed by the error logger
event handlersincluded in OTP. This configuration parameter is used by the two event handlers defined by the
Kernel application and the two event handlersin the SASL application. (If you have implemented your own error
handlers, this configuration parameter has no effect on them.)

Dept h is used as follows: Format strings passed to the event handlers are rewritten. The format controls ~p
and ~w are replaced with ~P and ~W respectively, and Dept h is used as the depth parameter. For details, see
io:format/2inSTDLIB.

Ericsson AB. All Rights Reserved.: Kernel | 3

kernel

Note;

A reasonable starting value for Dept h is 30. We recommend to test crashing various processes in your
application, examine the logs from the crashes, and then increase or decrease the value.

gl obal _groups = [GroupTupl €]
Defines global groups, see gl obal _gr oup(3) . Inthis parameter:

e GoupTuple = {GoupNane, [Node]} | {GoupName, PublishType, [Node]}
e GoupNanme = atom()
e PublishType = normal | hidden
* Node = node()
i net_default_connect _options = [{Opt, Val}]

Specifies default options for connect sockets, seei net (3) .
i net_default_listen_options = [{Opt, Val}]

Specifies default optionsfor | i st en (and accept) sockets, seei net (3) .
{inet_dist_use_interface, ip_address()}

If the host of an Erlang node has many network interfaces, this parameter specifies which one to listen on. For
the type definition of i p_addr ess() , seei net (3).

{inet _dist listen_mn, First} and{inet _dist _|isten_nmax, Last}
Definesthe Fi r st . . Last port range for the listener socket of a distributed Erlang node.
{inet_dist_listen_options, Opts}

Defines alist of extra socket options to be used when opening the listening socket for a distributed Erlang node.
Seegen_tcp:listen/ 2.

{inet_dist_connect_options, Opts}

Defines a list of extra socket options to be used when connecting to other distributed Erlang nodes. See
gen_t cp: connect/ 4.

i net_parse_error_log = silent

If set, noerror_| ogger messages are generated when erroneous lines are found and skipped in the various
Inet configuration files.

inetrc = Fil enane

The name (string) of an Inet user configuration file. For details, see section | net Confi gurati on inthe
ERTS User's Guide.
net _setuptime = SetupTi ne

Set upTi me must be a positive integer or floating point number, and is interpreted as the maximum allowed
time for each network operation during connection setup to another Erlang node. The maximum allowed value
is120. If higher values are specified, 120 isused. Default is 7 seconds if the variable is not specified, or if the
valueisincorrect (for example, not a number).

Notice that this value does not limit the total connection setup time, but rather each individual network operation
during the connection setup and handshake.

4 | Ericsson AB. All Rights Reserved.: Kernel

kernel

net ticktinme = TickTine

Specifiesthe net _ker nel tick time. Ti ckTi ne is specified in seconds. Once every Ti ckTi ne/ 4 second,
al connected nodes are ticked (if anything else is written to a node). If nothing is received from another node
within thelast four tick times, that node is considered to be down. This ensures that nodesthat are not responding,
for reasons such as hardware errors, are considered to be down.

Thetime T, in which anode that is not responding is detected, iscalculatedasM nT < T < MaxT, where:

MinT = TickTime - TickTime / 4
MaxT = TickTime + TickTime / 4

Ti ckTi me defaultsto 60 (seconds). Thus, 45 < T < 75 seconds.
Notice that all communicating nodes are to have the same Ti ckTi me value specified.
Normally, aterminating node is detected immediately.

shutdown_tinmeout = integer() | infinity

Specifiesthetimeappl i cati on_contr ol | er waitsfor an application to terminate during node shutdown.
If the timer expires, appl i cati on_control | er brutaly killsappl i cati on_mast er of the hanging
application. If this parameter is undefined, it defaultstoi nfinity.

sync_nodes_mandat ory = [NodeNane]

Specifies which other nodes that must be alive for this node to start properly. If some node in the list does not
start within the specified time, this node does not start either. If this parameter is undefined, it defaultsto[] .

sync_nodes_opti onal = [NodeNane]

Specifies which other nodesthat can be alivefor this nodeto start properly. If some nodein thislist does not start
within the specified time, this node starts anyway. If this parameter is undefined, it defaults to the empty list.

sync_nodes_tinmeout = integer() | infinity

Specifies the time (in milliseconds) that this node waits for the mandatory and optional nodes to start. If this
parameter isundefined, no node synchronization is performed. Thisoption ensuresthat gl obal issynchronized.

start _dist_ac = true | fal se

Starts the di st _ac server if the parameter ist r ue. This parameter is to be set to t r ue for systems using
distributed applications.

Defaultstof al se. If this parameter is undefined, the server is started if parameter di st ri but ed isset.
start_boot _server = true | false

Startstheboot _ser ver if theparameterist r ue (seeer| _boot _server (3)). Thisparameter isto be set
tot r ue in an embedded system using this service.

Defaultstof al se.
boot _server_slaves = [Sl avel P

If configuration parameter start _boot _server is true, this parameter can be used to initialize
boot server withalist of dave IP addresses:

Slavel P = string() | atom| {integer(),integer(),integer(),integer()},
where0 <= integer() <=255.

Examples of Sl avel Pinatom, string, and tuple form:

' 150. 236. 16. 70, "150, 236, 16, 70", {150, 236, 16, 70} .

Ericsson AB. All Rights Reserved.: Kernel | 5

kernel

Defaultsto[] .
start _disk log = true | false

Startsthe di sk_| og_ser ver if the parameter ist r ue (seedi sk_I og(3)). This parameter isto be set to
t r ue in an embedded system using this service.

Defaultstof al se.
start_pg2 = true | false

Startsthepg?2 server (seepg2(3)) if the parameter ist r ue. Thisparameteristobesettot r ue in an embedded
system that uses this service.

Defaultstof al se.
start _timer = true | false

Startsthet i mer _ser ver if the parameter ist r ue (seet i ner (3)). Thisparameter istobesettotr ue in
an embedded system using this service.

Defaultstof al se.
shut down_func = {Md, Func}
Where:
« Md = atom()
e Func = atom()

Sets afunction that appl i cati on_control | er calswhen it starts to terminate. The function is called as
Mod: Func(Reason) ,whereReason istheterminatereasonforappl i cati on_control | er,andit must
return as soon as possible for appl i cati on_control | er toterminate properly.

See Also

app(4), application(3), code(3), disk log(3), erl_boot_server(3), erl_ddll(3),
error_logger(3), file(3), global(3), global_group(3), heart(3), inet(3),
net _kernel (3),0s(3),pg2(3),rpc(3),seq_trace(3),user(3),timer(3)

6 | Ericsson AB. All Rights Reserved.: Kernel

application

application

Erlang module

In OTP, application denotes a component implementing some specific functionality, that can be started and stopped
asaunit, and that can be reused in other systems. This module interacts with application controller, aprocess started
at every Erlang runtime system. This module contains functions for controlling applications (for example, starting and
stopping applications), and functionsto accessinformation about applications (for exampl e, configuration parameters).

An application is defined by an application specification. The specification is normally located in an application
resource file named Appl i cati on. app, where Appl i cat i on is the application name. For details about the
application specification, see app(4) .

Thismodule can a so be viewed as a behaviour for an application implemented according to the OTP design principles
asasupervision tree. The definition of how to start and stop thetreeisto belocated in an application callback module,
exporting a predefined set of functions.

For details about applications and behaviours, see OTP Design Principles.

Data Types
start type() =
normal |
{takeover, Node :: node()} |
{failover, Node :: node()}
restart type() = permanent | transient | temporary

tuple of(T)
A tuple where the elements are of type T.

Exports

ensure all started(Application) -> {ok, Started} | {error, Reason}

ensure all started(Application, Type) ->
{ok, Started} | {error, Reason}

Types:
Application = atom()
Type = restart_type()
Started = [atom()]
Reason = term()

Equivalent to calling st art / 1, 2 repeatedly on al dependencies that are not yet started for an application.

Returns { ok, AppNames} for asuccessful start or for an aready started application (which is, however, omitted
from the AppNarnes list).

Thefunctionreports{ error, {AppNane, Reason}} for errors, where Reason isany possible reason returned
by start/ 1, 2 when starting a specific dependency.

If an error occurs, the applications started by the function are stopped to bring the set of running applications back
toitsinitial state.

Ericsson AB. All Rights Reserved.: Kernel | 7

application

ensure started(Application) -> ok | {error, Reason}
ensure started(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()

Type = restart_type()

Reason = term()
Equivalenttost art/ 1, 2 except it returns ok for already started applications.

get all env() -> Env
get all env(Application) -> Env
Types:
Application = atom()
Env = [{Par :: atom(), Val :: term()}]

Returns the configuration parameters and their values for Appl i cat i on. If the argument is omitted, it defaults to
the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not belong to any application, the
functionreturns|] .

get all key() -> []1 | {ok, Keys}
get all key(Application) -> undefined | Keys

Types:
Application = atom()
Keys = {ok, [{Key :: atom(), Val :: term()}, ...]}

Returns the application specification keys and their values for Appl i cat i on. If the argument is omitted, it defaults
to the application of the calling process.

If the specified application is not loaded, the function returnsundef i ned. If the process executing the call does not
belong to any application, the function returns|] .

get application() -> undefined | {ok, Application}
get application(PidOrModule) -> undefined | {ok, Application}

Types:
PidOrModule = (Pid :: pid()) | (Module :: module())
Application = atom()

Returns the name of the application to which the process Pi d or the module Mbdul e belongs. Providing no argument
isthesameascallingget _application(self()).

If the specified process does not belong to any application, or if the specified process or module does not exist, the
function returnsundef i ned.

get env(Par) -> undefined | {ok, Val}

get env(Application, Par) -> undefined | {ok, Val}
Types:

8 | Ericsson AB. All Rights Reserved.: Kernel

application

Application = Par = atom()
Val = term()

Returns the value of configuration parameter Par for Appl i cati on. If the application argument is omitted, it
defaults to the application of the calling process.

Returnsundef i ned if any of the following applies:

e The specified application is not loaded.
* Theconfiguration parameter does not exist.
» The process executing the call does not belong to any application.

get env(Application, Par, Def) -> Val
Types:

Application = Par = atom()

Def = Val = term()

Workslikeget _env/ 2 but returns value Def when configuration parameter Par does not exist.

get key(Key) -> undefined | {ok, Val}
get key(Application, Key) -> undefined | {ok, Val}

Types:
Application = Key = atom()
Val = term()

Returnsthe value of the application specification key Key for Appl i cat i on. If the application argument is omitted,
it defaults to the application of the calling process.

Returnsundef i ned if any of the following applies:

* The specified application is not loaded.
e The specification key does not exist.
» The process executing the call does not belong to any application.

load(AppDescr) -> ok | {error, Reason}

load (AppDescr, Distributed) -> ok | {error, Reason}

Types.
AppDescr = Application | (AppSpec :: application_spec())
Application = atom()

Distributed =

{Application, Nodes} | {Application, Time, Nodes} | default
Nodes = [node() | tuple_of (node())]
Time = integer() >=1
Reason = term()
application spec() =

{application,

Application :: atom(),

AppSpecKeys :: [application_opt()]}
application opt() =

{description, Description :: string()} |

Ericsson AB. All Rights Reserved.: Kernel | 9

application

{vsn, Vsn :: string()} |
{id, Id :: string()} |
{modules, [Module :: module()]} |
{registered, Names :: [Name :: atom()1} |
{applications, [Application :: atom()1} |
{included applications, [Application :: atom()]} |
{env, [{Par :: atom(), Val :: term()}1} |
{start phases,
[{Phase :: atom(), PhaseArgs :: term()}] | undefined} |
{maxT, MaxT :: timeout()} |
{maxP, MaxP :: integer() >= 1 | infinity} |
{mod, Start :: {Module :: module(), StartArgs :: term()}}

Loads the application specification for an application into the application controller. It also loads the application
specifications for any included applications. Notice that the function does not load the Erlang object code.

The application can be specified by itsname Appl i cat i on. Inthiscase, the application controller searchesthe code
path for the application resource file Appl i cat i on. app and loads the specification it contains.

The application specification can also be specified directly as a tuple AppSpec, having the format and contents as
describedinapp(4) .

IfDi stributed == {Application,[Tine,] Nodes}, the application becomes distributed. The argument
overrides the value for the application in the Kernel configuration parameter di st ri but ed. Appl i cati on must
be the application name (same as in the first argument). If a node crashes and Ti ne is specified, the application
controller waits for Ti me milliseconds before attempting to restart the application on another node. If Ti ne is not
specified, it defaultsto O and the application is restarted immediately.

Nodes isalist of hode names where the application can run, in priority from left to right. Node names can be grouped
using tuplesto indicate that they have the same priority.

Example:

Nodes = [cpl@cave, {cp2@cave, cp3@cave}]

This means that the application is preferably to be started at cpl@ave. If cpl@ave is down, the application is
tobe started at cp2@ave or cp3@ave.

IfDi stributed == def aul t,thevauefortheapplicationintheKernel configuration parameter di st ri but ed
isused.

loaded applications() -> [{Application, Description, Vsn}]

Types:
Application = atom()
Description = Vsn = string()

Returns alist with information about the applications, and included applications, which areloaded using| oad/ 1, 2.
Appl i cati on isthe application name. Descri pt i on and Vsn are the values of their descri pti on andvsn
application specification keys, respectively.

permit (Application, Permission) -> ok | {error, Reason}
Types:

10 | Ericsson AB. All Rights Reserved.: Kernel

application

Application = atom()
Permission = boolean()
Reason = term()

Changes the permission for Appl i cati on to run at the current node. The application must be loaded using
| oad/ 1, 2 for the function to have effect.

If the permission of aloaded, but not started, application isset to f al se, st art returns ok but the application is
not started until the permissionissettotr ue.

If the permission of a running application is set to f al se, the application is stopped. If the permission later is set
totrue, itisrestarted.

If the application isdistributed, setting the permissiontof al se meansthat the application will be started at, or moved
to, another node according to how its distribution is configured (seel oad/ 2).

Thefunction does not return until the application is started, stopped, or successfully moved to another node. However,
in some caseswhere permissionissettot r ue, the function returns ok even though the application isnot started. This
is true when an application cannot start because of dependencies to other applications that are not yet started. When
they are started, Appl i cat i on isstarted aswell.

By default, all applications are loaded with permissiont r ue on all nodes. The permission can be configured using
the Kernel configuration parameter per i ssi ons.

set env(Application, Par, Val) -> ok
set _env(Application, Par, Val, Opts) -> ok

Types:
Application = Par = atom()
Val = term()

Opts = [{timeout, timeout()} | {persistent, boolean()}]
Setsthe value of configuration parameter Par for Appl i cati on.

set _env/ 4 usesthestandardgen_ser ver time-out value (5000 ms). Optiont i meout canbe specifiedif another
time-out value is useful, for example, in situations where the application controller is heavily loaded.

If set _env/ 4 is caled before the application is loaded, the application environment values specified in file
Appl i cati on. app override the ones previously set. Thisis also true for application reloads.

Option per si st ent canbesettot r ue to guarantee that parameters set with set _env/ 4 are not overridden by
those defined in the application resource file on load. This means that persistent values will stick after the application
isloaded and also on application reload.

Warning:

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often the value is read by the application.
Careless use of this function can put the application in aweird, inconsistent, and malfunctioning state.

start(Application) -> ok | {error, Reason}
start(Application, Type) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 11

application

Application = atom()
Type = restart _type()
Reason = term()
Starts Appl i cati on. If it is not loaded, the application controller first loads it using | oad/ 1. It ensures that

any included applications are loaded, but does not start them. That is assumed to be taken care of in the code for
Appl i cation.

The application controller checks the value of the application specification key appl i cati ons, to ensure that all
applications needed to be started before this application arerunning. Otherwise, { er r or, { not _st art ed, App}}
isreturned, where App is the name of the missing application.

The application controller then creates an application master for the application. The application master isthe group
leader of all the processes in the application. The application master starts the application by calling the application
callback function Modul e: st ar t / 2 asdefined by the application specification key nod.

Argument Type specifies the type of the application. If omitted, it defaultstot enpor ary.
* If apermanent application terminates, all other applications and the entire Erlang node are also terminated.

e « [fatransient application terminateswith Reason == nor mal , thisisreported but no other applications
are terminated.
« |If atransient application terminates abnormally, all other applications and the entire Erlang node are also
terminated.

» If atemporary application terminates, this is reported but no other applications are terminated.

Notice that an application can always be stopped explicitly by caling st op/ 1. Regardless of the type of the
application, no other applications are affected.

Notice also that the transient type is of little practical use, because when a supervision tree terminates, the reason is
set to shut down, not nor mal .

start_type() -> StartType | undefined | local
Types:
StartType = start_type()

This function is intended to be called by a process belonging to an application, when the application is started, to
determine the start type, whichis St art Type or | ocal .

For adescription of St art Type, seeModul e: start/ 2.

| ocal isreturned if only parts of the application are restarted (by a supervisor), or if the function is called outside
astartup.

If the process executing the call does not belong to any application, the function returnsundef i ned.

stop(Application) -> ok | {error, Reason}
Types:
Application = atom()
Reason = term()
StopsAppl i cat i on. Theapplication master callsModul e: prep_st op/ 1, if such afunction isdefined, and then
tellsthetop supervisor of the application to shut down (seesuper vi sor (3)). Thismeansthat the entire supervision

tree, including included applications, is terminated in reversed start order. After the shutdown, the application master
calsModul e: st op/ 1. Modul e isthe callback module as defined by the application specification key nmod.

Last, the application master terminates. Notice that all processes with the application master as group leader, that is,
processes spawned from a process bel onging to the application, are also terminated.

12 | Ericsson AB. All Rights Reserved.: Kernel

application

When stopped, the application is still loaded.

To stop adistributed application, st op/ 1 must be called on all nodeswhere it can execute (that is, on all nodeswhere
it has been started). The call to st op/ 1 on the node where the application currently executes stopsits execution. The
application is not moved between nodes, as st op/ 1 is called on the node where the application currently executes
beforest op/ 1 is called on the other nodes.

takeover(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()

Type = restart _type()

Reason = term()
Takes over the distributed application Appl i cati on, which executes at another node Node. At the current
node, the application isrestarted by calling Modul e: st art ({t akeover, Node}, St art Args) . Modul e and
St art Ar gs areretrieved from the loaded application specification. The application at the other node is not stopped

until the startup is completed, that is, when Modul e: st art/ 2 and any callsto Modul e: st art _phase/ 3 have
returned.

Thus, two instances of the application run simultaneously during the takeover, so that data can be transferred from the
old to the new instance. If thisis not an acceptable behavior, parts of the old instance can be shut down when the new
instance is started. However, the application cannot be stopped entirely, at least the top supervisor must remain alive.

For adescription of Type, seestart/ 1, 2.

unload(Application) -> ok | {error, Reason}
Types.

Application = atom()

Reason = term()

Unloads the application specification for Appli cati on from the application controller. It aso unloads the
application specificationsfor any included applications. Notice that the function does not purge the Erlang object code.

unset env(Application, Par) -> ok
unset env(Application, Par, Opts) -> ok
Types.
Application = Par = atom()
Opts = [{timeout, timeout()} | {persistent, boolean()}]

Removes the configuration parameter Par and itsvalue for Appl i cat i on.

unset _env/ 2 uses the standard gen_ser ver time-out value (5000 ms). Option t i meout can be specified if
another time-out value is useful, for example, in situations where the application controller is heavily loaded.

unset _env/ 3 aso alows the persistent option to be passed (seeset _env/ 4).

Warning:

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often the value is read by the application.
Careless use of this function can put the application in aweird, inconsistent, and malfunctioning state.

Ericsson AB. All Rights Reserved.: Kernel | 13

application

which applications() -> [{Application, Description, Vsn}]

which applications(Timeout) -> [{Application, Description, Vsn}]

Types:
Timeout = timeout(
Application = atom
Description = Vsn

)
string()

I~ ~

Returns a list with information about the applications that are currently running. Appl i cat i on isthe application
name. Descri ption and Vsn are the values of their descri pti on and vsn application specification keys,
respectively.

whi ch_appl i cati ons/ 0 usesthe standard gen_ser ver time-out value (5000 ms). A Ti meout argument can
be specified if another time-out value is useful, for example, in situations where the application controller is heavily
loaded.

Callback Module

The following functions are to be exported from an appl i cat i on callback module.

Exports

Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error,
Reason}

Types:
Start Type = start_type()
StartArgs = tern()
Pid = pid()

State = term()

This function is called whenever an application is started using start/ 1, 2, and is to start the processes of the
application. If the application is structured according to the OTP design principles as a supervision tree, this means
starting the top supervisor of the tree.

St ar t Type definesthe type of start:

* normal ifitisanormal startup.

* nornal asoif theapplication is distributed and started at the current node because of afailover from another
node, and the application specificationkey st art _phases == undefi ned.

« {takeover, Node} if the application is distributed and started at the current node because of a takeover from
Node, either becauset akeover / 2 has been called or because the current node has higher priority than Node.

o« {failover, Node} if theapplication is distributed and started at the current node because of afailover from
Node, and the application specification key st art _phases /= undefi ned.
Start Args isthe St ar t Ar gs argument defined by the application specification key nod.

The function is to return { ok, Pi d} or {ok, Pi d, St at e}, where Pi d is the pid of the top supervisor and
St at e is any term. If omitted, St at e defaults to [] . If the application is stopped later, St at e is passed to
Modul e: prep_stop/ 1.

Module:start phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}

Types.
Phase = aton()

14 | Ericsson AB. All Rights Reserved.: Kernel

application

Start Type = start_type()
PhaseArgs = term))
Pid = pid()

State = state()

Starts an application with included applications, when synchronization is needed between processes in the different
applications during startup.

The start phases are defined by the application specificationkey st art _phases == [{Phase, PhaseArgs}].
For included applications, the set of phases must be a subset of the set of phases defined for the including application.

The function is called for each start phase (as defined for the primary application) for the primary application and all
included applications, for which the start phase is defined.

For adescription of St art Type, see Modul e: start/ 2.

Module:prep stop(State) -> NewState
Types:
State = NewState = term()
Thisfunctioniscalled when an application isabout to be stopped, before shutting down the processes of the application.

St at e isthe state returned from Modul e: start/ 2, or [] if no state was returned. NewSt at e is any term and
ispassed to Mbdul e: st op/ 1.

Thefunctionisoptional. If it isnot defined, the processes are terminated and then Modul e: st op(St at e) iscalled.

Module:stop(State)
Types.
State = term)

Thisfunction is called whenever an application has stopped. It isintended to be the opposite of Mbdul e: start/ 2
and isto do any necessary cleaning up. Thereturn value isignored.

St at e isthe return value of Modul e: prep_st op/ 1, if such afunction exists. Otherwise St at e is taken from
thereturn value of Mbdul e: start/ 2.

Module:config change(Changed, New, Removed) -> ok
Types.

Changed = [{Par, Val }]

New = [{Par, Val }]

Removed = [Par]

Par = atom()

Val = term()

Thisfunction is called by an application after a code replacement, if the configuration parameters have changed.
Changed isalist of parameter-value tuplesincluding all configuration parameters with changed values.
Newisalist of parameter-value tuplesincluding all added configuration parameters.

Renmoved isalist of all removed parameters.

See Also
OTP Design Principles, kernel(6), app(4)

Ericsson AB. All Rights Reserved.: Kernel | 15

auth

auth

Erlang module

This module is deprecated. For a description of the Magic Cookie system, refer to Distributed Erlang in the Erlang
Reference Manual.

Data Types

cookie() = atom()

Exports

cookie() -> Cookie
Types.
Cookie = cooki e()
Useerl ang: get _cooki e() in ERTSinstead.

cookie(TheCookie) -> true

Types.
TheCookie = Cookie | [Cookie]
The cookie can also be specified as a list with a single atom element.
Cookie = cooki e()

Useerl ang: set _cooki e(node(), Cookie) in ERTSinstead.

is_auth(Node) -> yes | no
Types:
Node = node()

Returnsyes if communication with Node is authorized. Notice that a connection to Node is established in this case.
Returnsno if Node does not exist or communication is not authorized (it has another cookie than aut h thinksit has).

Usenet _adm pi ng(Node) instead.

node cookie([Node, Cookiel]) -> yes | no
Types.

Node = node()

Cooki e = cooki e()

Equivalent tonode_cooki e(Node, Cooki e) .

node cookie(Node, Cookie) -> yes | no
Types:

Node = node()

Cookie = cookie()

Sets the magic cookie of Node to Cooki e and verifies the status of the authorization. Equivalent to calling
erl ang: set _cooki e(Node, Cooki e),followed by aut h: i s_aut h(Node) .

16 | Ericsson AB. All Rights Reserved.: Kernel

code

code

Erlang module

This module contains the interface to the Erlang code server, which deals with the loading of compiled code into a
running Erlang runtime system.

The runtime system can be started in embedded or inter active mode. Which one is decided by command-line flag
- node:

% erl -mode interactive

The modes are as follows:

* Inembedded mode, all codeisloaded during system startup according to the boot script. (Code can a so be loaded
later by explicitly ordering the code server to do so).

e In interactive mode, which is default, only some code is loaded during system startup, basically the modules

needed by the runtime system. Other code is dynamically |oaded when first referenced. When acall to afunction
inacertain moduleis made, and the moduleis not loaded, the code server searchesfor and triesto load the modul e.

To prevent accidentally rel oading of modules affecting the Erlang runtime system, directoriesker nel , st dl i b, and
conpi | er areconsidered sticky. This means that the system issues a warning and rejects the request if a user tries
to reload amodule residing in any of them. The feature can be disabled by using command-line flag - nost i ck.

Code Path

In interactive mode, the code server maintains a search path, usually called the code path, consisting of a list of
directories, which it searches sequentially when trying to load a module.

Initially, the code path consists of the current working directory and all Erlang object code directories under library
directory $OTPROCT/ | i b, where $OTPROOT is the installation directory of Erlang/OTP, code: root _dir ().
Directories can benamed Nane[- VVsn] and the code server, by default, choosesthe directory with the highest version
number among those having the same Nane. Suffix - Vsn is optional. If an ebi n directory exists under Nane][-
Vsn] , thisdirectory is added to the code path.

Environment variable ERL_ LI BS (defined in the operating system) can be used to define more library directories to
be handled in the same way as the standard OTP library directory described above, except that directories without an
ebi n directory are ignored.

All application directories found in the additional directories appears before the standard OTP applications, except for
the Kernel and STDLIB applications, which are placed before any additional applications. In other words, modules
found in any of the additional library directories override modules with the same name in OTP, except for modules
in Kernel and STDLIB.

Environment variable ERL_LI BS (if defined) is to contain a colon-separated (for Unix-like systems) or semicolon-
separated (for Windows) list of additional libraries.

Example:
On aUnix-like system, ERL_ LI BS can be set to the following

/usr/local/jungerl:/home/some user/my erlang lib

On Windows, use semi-colon as separator.

Ericsson AB. All Rights Reserved.: Kernel | 17

code

Loading of Code From Archive Files

Warning:

The support for loading code from archive files is experimental. The purpose of releasing it before it is ready is
to obtain early feedback. The file format, semantics, interfaces, and so on, can be changed in afuture release. The
functionl i b_di r/ 2 and flag - code_pat h_choi ce are aso experimental.

The Erlang archives are ZI P fileswith extension . ez. Erlang archives can also beenclosedinescr i pt fileswhose
file extension is arbitrary.

Erlang archive files can contain entire Erlang applications or parts of applications. The structure in an archive file
is the same as the directory structure for an application. If you, for example, create an archive of mesi a- 4. 4. 7,
the archive file must be named nmesi a- 4. 4. 7. ez and it must contain atop directory named rmesi a- 4. 4. 7. If
the version part of the name is omitted, it must also be omitted in the archive. That is, amrmesi a. ez archive must
contain ammesi a top directory.

An archivefile for an application can, for example, be created like this:

zip:create("mnesia-4.4.7.ez",
["mnesia-4.4.7"],
[{cwd, code:lib dir()},
{compress, all},
{uncompress, [".beam",".app"1}1).

Any file in the archive can be compressed, but to speed up the access of frequently read files, it can be a good idea
to store beamand app files uncompressed in the archive.

Normally the top directory of an application islocated in library directory $OTPROOT/ | i b or in adirectory referred
to by environment variable ERL_ LI BS. At startup, when theinitial code path is computed, the code server also looks
for archive files in these directories and possibly adds ebi n directories in archives to the code path. The code path
then contains paths to directories that look like $OTPROOT/ | i b/ mesi a. ez/ mesi a/ ebi n or $OTPROOT/
i b/mMmesia-4.4.7.ez/ mesia-4.4.7/ebin.

The code server uses module er| _prim | oader in ERTS (possibly through erl _boot server) to read
code files from archives. However, the functionsin er| _pri m | oader can aso be used by other applications
to read files from archives. For example, the call erl _prim |l oader:list _dir("/otp/root/lib/
mesi a-4. 4. 7. ez/ mesi a- 4. 4. 7/ exanpl es/ bench) " would list the contents of a directory inside an
archive. Seeer| _prim.| oader(3).

An application archive file and aregular application directory can coexist. This can be useful when it is needed to have
parts of the application asregular files. A typical caseisthepri v directory, which must reside as aregular directory
tolink in driversdynamically and start port programs. For other applications that do not need this, directory pri v can
reside in the archive and the files under the directory pr i v can beread througher| _pri m | oader.

When a directory is added to the code path and when the entire code path is (re)set, the code server decides which
subdirectories in an application that are to be read from the archive and which that are to be read as regular files. If
directories are added or removed afterwards, the file access can fail if the code path is not updated (possibly to the
same path as before, to trigger the directory resolution update).

For each directory on the second level in the application archive (ebi n, priv, src, and so on), the code
server first chooses the regular directory if it exists and second from the archive. Function code: lib_dir/2
returns the path to the subdirectory. For example, code: i b_di r (megaco, ebi n) can return / ot p/ r oot /

18 | Ericsson AB. All Rights Reserved.: Kernel

code

i b/ megaco-3.9.1.1. ez/ megaco-3.9. 1. 1/ ebi n whilecode: | i b_di r (negaco, pri v) can return
/otp/root/lib/negaco-3.9.1. 1/ priv.

Whenanescri pt filecontainsan archive, there are no restrictions on the name of theescr i pt and no restrictions
on how many applications that can be stored in the embedded archive. Single Beam files can also reside on the top
level in the archive. At startup, the top directory in the embedded archive and all (second level) ebi n directoriesin
the embedded archive are added to the code path. Seeert s: escri pt (1) .

When the choice of directories in the code path is stri ct, the directory that ends up in the code path is
exactly the stated one. This means that if, for example, the directory $OTPROOT/ | i b/ mmesi a- 4. 4. 7/ ebi nis
explicitly added to the code path, the code server does not load files from $OTPROOT/ | | b/ mesi a-4. 4. 7. ez/
mmesi a- 4. 4. 7/ ebi n.

This behavior can be controlled through command-line flag - code_pat h_choi ce Choi ce. If theflagisset to
r el axed, the code server instead chooses a suitable directory depending on the actua file structure. If a regular
application ebi n directory exists, it is chosen. Otherwise, the directory ebi n in the archive is chosen if it exists. If
neither of them exists, the original directory is chosen.

Command-lineflag- code_pat h_choi ce Choi ce alsoaffectshow modulei ni t interpretstheboot scri pt.
The interpretation of the explicit code pathsin the boot scri pt canbestrict orrel axed. Itisparticularly
useful to set the flag to r el axed when elaborating with code loading from archives without editing the boot
scri pt.Thedefaultisr el axed. Seeerts:init(3).

Current and Old Code

The code for amodule can exist in two variantsin asystem: current code and old code. When amoduleisloaded into
the system for the first time, the module code becomes ‘current' and the global export tableis updated with references
to al functions exported from the module.

If then a new instance of the module is loaded (for example, because of error correction), the code of the previous
instance becomes'old’, and all export entriesreferring to the previousinstance are removed. After that, the new instance
isloaded asfor the first time, and becomes 'current'.

Both old and current code for a module are valid, and can even be evaluated concurrently. The difference is that
exported functions in old code are unavailable. Hence, a global call cannot be made to an exported function in old
code, but old code can still be evaluated because of processes lingeringin it.

If athird instance of the module isloaded, the code server removes (purges) the old code and any processes lingering
in it are terminated. Then the third instance becomes 'current’ and the previously current code becomes 'old'.

For more information about old and current code, and how to make a process switch from old to current code, see
section Compilation and Code Loading in the Erlang Reference Manual.

Argument Types and Invalid Arguments

Module and application names are atoms, while file and directory names are strings. For backward compatibility
reasons, some functions accept both strings and atoms, but a future release will probably only allow the arguments
that are documented.

Asfrom Erlang/OTP R12B, functions in this module generally fail with an exception if they are passed an incorrect
type (for example, an integer or atuple where an atom is expected). An error tuple is returned if the argument typeis
correct, but there are some other errors (for example, a non-existing directory is specified to set _pat h/ 1).
Error Reasons for Code-Loading Functions

Functions that load code (such as| oad_fi | e/ 1) will return{ error, Reason} if theload operation fails. Here
follows a description of the common reasons.

Ericsson AB. All Rights Reserved.: Kernel | 19

code

badfile
The object code has an incorrect format or the module name in the object code is not the expected module name.
nofile
No file with object code was found.
not _purged
The object code could not be loaded because an old version of the code already existed.
on_l oad_failure
The module has an -on_load function that failed when it was called.
sticky _directory
The object code resides in a sticky directory.

Data Types
load ret() =
{error, What :: load_error_rsn()} |

{module, Module :: module()}

load error _rsn() =
badfile |
nofile |
not purged |
on load failure |
sticky directory

prepared code()
An opague term holding prepared code.

Exports

set path(Path) -> true | {error, What}

Types:
Path = [Dir :: file:filenane()]
What = bad directory
Sets the code path to the list of directories Pat h.
Returns:
true
If successful

{error, bad_directory}
If any Di r isnot adirectory name

get path() -> Path

Types:
Path = [Dir :: file:filenanme()]
Returns the code path.

20 | Ericsson AB. All Rights Reserved.: Kernel

code

add path(Dir) -> add_path_ret()
add pathz(Dir) -> add_path_ret()
Types:
Dir = file:filenanme()
add path ret() = true | {error, bad directory}

Adds Di r to the code path. The directory is added as the last directory in the new path. If Di r aready existsin the
path, it is not added.

Returnst r ue if successful, or{ error, bad_directory} if D r isnotthe name of adirectory.

add patha(Dir) -> add_path_ret()
Types:
Dir = file:filename()
add path ret() = true | {error, bad directory}
AddsDi r to the beginning of the code path. If Di r exists, it is removed from the old position in the code path.

Returnst r ue if successful, or{ error, bad_directory} if D r isnotthe name of adirectory.

add paths(Dirs) -> ok
add pathsz(Dirs) -> ok
Types:
Dirs = [Dir :: file:filename()]
Addsthedirectoriesin Di r s to the end of the code path. If aDi r exists, it is not added.
Always returns ok, regardless of the validity of each individual Di r .

add pathsa(Dirs) -> ok
Types:
Dirs = [Dir :: file:filenanme()]
TraversesDi r s and adds each Di r to the beginning of the code path. This means that the order of Di r s isreversed

in the resulting code path. For example, if you add [Di r 1, Di r 2] , the resulting path will be [Di r2, Di r 1]
A dCodePat h] .

If aDi r aready existsin the code path, it is removed from the old position.
Always returns ok, regardless of the validity of each individual Di r .

del path(NameOrDir) -> boolean() | {error, What}
Types:
NameOrDir = Name | Dir
Name = atom()
Dir = file:filenane()
What = bad name
Deletes a directory from the code path. The argument can be an atom Nane, in which case the directory with the

name. ../ Nanme[- Vsn] [/ ebi n] isdeleted from the code path. Also, the complete directory name Di r can be
specified as argument.

Returns:

Ericsson AB. All Rights Reserved.: Kernel | 21

code

true

If successful
fal se

If the directory is not found
{error, bad_nane}

If theargument isinvalid

replace path(Name, Dir) -> true | {error, What}
Types:
Name = atom()
Dir = file:filename()
What = bad directory | bad name | {badarg, term()}

Replaces an old occurrence of adirectory named. . . / Nanme[- Vsn] [/ ebi n] inthecode path, with Di r . If Nane
doesnot exist, it addsthe new directory Di r lastinthe code path. The new directory must alsobenamed. . . / Nang][-
Vsn] [/ ebi n] . Thisfunction isto be used if anew version of the directory (library) is added to a running system.

Returns:
true
If successful
{error, bad_nane}
If Nane is not found
{error, bad_directory}
If Di r does not exist
{error, {badarg, [Nanme, Dir]}}
If Nare or Di r isinvalid

load file(Module) -> load_ret()

Types.
Module = module()
load ret() =

{error, What :: load_error_rsn()} |
{module, Module :: module()}

Tries to load the Erlang module Modul e, using the code path. It looks for the object code file with an extension
corresponding to the Erlang machine used, for example, Modul e. beam Theloading failsif the module name found
in the object code differsfrom the name Modul e. | oad_bi nar y/ 3 must be used to load object code with amodule
name that is different from the file name.

Returns{ nodul e, Mbdul e} if successful, or{error, Reason} if loading fails. See Error Reasons for Code-
Loading Functions for a description of the possible error reasons.

load abs(Filename) -> load_ret()
Types:
Filename = file:fil enane()
load ret() =

22 | Ericsson AB. All Rights Reserved.: Kernel

code

{error, What :: load_error_rsn()} |
{module, Module :: module()}

loaded filename() =
(Filename :: file:filenane()) | | oaded_ret_atons()

loaded ret atoms() = cover_compiled | preloaded
Sameas!| oad_fil e(Mbdul e), but Fi | enane isan absolute or relative filename. The code path is not searched.

It returns avalue in the same way as| oad_fi |l e/ 1. Notice that Fi | ename must not contain the extension (for
example, . beam) because| oad_abs/ 1 addsthe correct extension.

ensure loaded(Module) -> {module, Module} | {error, What}
Types:
Module = module()
What = embedded | badfile | nofile | on_load failure
Triestoload amoduleinthesameway asl oad_fi | e/ 1, unlessthemoduleisalready loaded. However, in embedded

mode it does not load a module that is not aready loaded, but returns{ error, enbedded} instead. See Error
Reasons for Code-Loading Functions for a description of other possible error reasons.

load binary(Module, Filename, Binary) ->
{module, Module} | {error, What}

Types:
Module = module()
Filename = | oaded _fil enane()
Binary = binary()
What = badarg | | oad_error_rsn()
loaded filename() =
(Filename :: file:filenane()) | | oaded_ret_atomns()
loaded ret _atoms() = cover_compiled | preloaded
Thisfunction can be used to | oad obj ect code on remote Erlang nodes. Argument Bi nar y must contain object codefor

Modul e. Fi | enane isonly used by the code server to keep arecord of from which file the object code for Modul e
comes. Thus, Fi | enane is not opened and read by the code server.

Returns{ nodul e, Mbdul e} if successful, or { error, Reason} if loadingfails. See Error Reasonsfor Code-
Loading Functions for a description of the possible error reasons.

atomic load(Modules) -> ok | {error, [{Module, What}]}
Types.
Modules = [Module | {Module, Filename, Binary}]
Module = module()
Filename = file:fil enane()
Binary = binary()
What =
badfile |
nofile |
on load not allowed |
duplicated |
not purged |
sticky directory |

Ericsson AB. All Rights Reserved.: Kernel | 23

code

pending on load

Triesto load all of the modulesin the list Modul es atomically. That means that either all modules are loaded at the
same time, or none of the modules are loaded if there is a problem with any of the modules.

Loading can fail for one the following reasons:
badfile
The object code has an incorrect format or the module name in the object code is not the expected module name.
nofile
No file with object code exists.
on_| oad_not _al | owed
A module contains an -on_load function.
dupl i cat ed
A moduleisincluded more than oncein Modul es.
not purged
The object code can not be loaded because an old version of the code aready exists.
sticky_directory
The object code resides in a sticky directory.
pendi ng_on_| oad
A previously loaded module containsan - on_| oad function that never finished.

If it isimportant to minimize the time that an application is inactive while changing code, use prepare loading/1 and
finish_loading/1 instead of at oni ¢_| oad/ 1. Hereis an example:

ok,Prepared} = code:prepare loading(Modules),

Put the application into an inactive state or do any
other preparation needed before changing the code.

= code:finish loading(Prepared),

Resume the application.

o® o A

o
o® X o° o°

)
%

prepare_loading(Modules) ->
{ok, Prepared} | {error, [{Module, What}]}

Types:
Modules = [Module | {Module, Filename, Binary}]
Module = module()
Filename = file:fil enanme()
Binary = binary()
Prepared = prepared_code()
What = badfile | nofile | on load not allowed | duplicated
Prepares to load the modulesin the list Modul es. Finish the loading by calling finish_loading(Prepared).
This function can fail with one of the following error reasons:
badfile

The object code has an incorrect format or the module name in the object code is not the expected module name.

24 | Ericsson AB. All Rights Reserved.: Kernel

code

nofile

No file with object code exists.
on_| oad_not _al | owed

A module contains an -on_load function.
dupl i cat ed

A moduleisincluded more than oncein Modul es.

finish loading(Prepared) -> ok | {error, [{Module, What}]}
Types:

Prepared = prepared_code()

Module = module()

What = not purged | sticky directory | pending on load

Tries to load code for all modules that have been previously prepared by prepare loading/1. The loading occurs
atomically, meaning that either all modules are loaded at the same time, or none of the modules are loaded.

This function can fail with one of the following error reasons:
not _pur ged
The object code can not be loaded because an old version of the code aready exists.
sticky directory
The object code residesin a sticky directory.
pendi ng_on_I| oad

A previously loaded module contains an - on_| oad function that never finished.

ensure modules loaded(Modules :: [Module]) ->
ok | {error, [{Module, What}]}

Types:
Module = module()
What = badfile | nofile | on load failure
Triesto load any modules not already loaded in the list Modul es inthe sameway asload file/1.

Returnsok if successful, or{ error, [{ Modul e, Reason}] } if loading of somemodulesfails. See Error Reasons
for Code-Loading Functions for a description of other possible error reasons.

delete(Module) -> boolean()
Types.
Module = module()

Removes the current code for Modul e, that is, the current code for Modul e is made old. This means that processes
can continue to execute the code in the module, but no external function calls can be madeto it.

Returnst r ue if successful, or f al se if thereis old code for Modul e that must be purged first, or if Modul e is
not a (loaded) module.

purge (Module) -> boolean()
Types.

Ericsson AB. All Rights Reserved.: Kernel | 25

code

Module = module()

Purges the code for Modul e, that is, removes code marked as old. If some processes still linger in the old code, these
processes are killed before the code is removed.

Note:

As of ERTS version 9.0, a process is only considered to be lingering in the code if it has direct references to
the code. For more information see documentation of er | ang: check_pr ocess_code/ 3, whichisused in
order to determine this.

Returnst r ue if successful and any process is needed to be killed, otherwisef al se.

soft purge(Module) -> boolean()
Types:
Module = module()
Purges the code for Modul e, that is, removes code marked as old, but only if no processes linger init.

Note:

As of ERTS version 9.0, a process is only considered to be lingering in the code if it has direct references to
the code. For more information see documentation of er | ang: check_pr ocess_code/ 3, whichisusedin
order to determine this.

Returnsf al se if the module cannot be purged because of processes lingering in old code, otherwiset r ue.

is loaded(Module) -> {file, Loaded} | false

Types:
Module = module()
Loaded = | oaded _fil enane()
loaded filename() =
(Filename :: file:filename()) | | oaded_ret_atons()

Fi | ename isan absolute filename.
loaded ret atoms() = cover_compiled | preloaded
Checksif Modul e isloaded. If itis, {fi | e, Loaded} isreturned, otherwisef al se.

Normally, Loaded is the absolute filename Fi | ename from which the code is obtained. If the module is
preloaded (see script (4)), Loaded==pr el oaded. If the module is Cover-compiled (see cover (3)),
Loaded==cover _conpi | ed.

all loaded() -> [{Module, Loaded}]

Types:
Module = module()
Loaded = | oaded _fil enanme()

loaded filename() =

26 | Ericsson AB. All Rights Reserved.: Kernel

code

(Filename :: file:filenanme()) | | oaded_ret_atons()
Fi | ename isan absolute filename.
loaded ret atoms() = cover_compiled | preloaded

Returns alist of tuples{ Modul e, Loaded} for all loaded modules. Loaded is normally the absolute filename,
asdescribed fori s_| oaded/ 1.

which(Module) -> Which

Types.
Module = module()
Which = file:filenane() | |oaded_ret_atons() | non existing

loaded ret atoms() = cover_compiled | preloaded

If the module is not loaded, this function searches the code path for the first file containing object code for Modul e
and returns the absol ute filename.

If the moduleisloaded, it returns the name of the file containing the loaded object code.
If the moduleis preloaded, pr el oaded isreturned.

If the module is Cover-compiled, cover _conpi | ed isreturned.

If the module cannot be found, non_exi st i ng isreturned.

get object code(Module) -> {Module, Binary, Filename} | error

Types:
Module = module()
Binary = binary()

Filename = file:filenane()

Searches the code path for the object code of module Modul e. Returns { Modul e, Bi nary, Fil enane} if
successful, otherwise er r or . Bi nary isabinary data object, which contains the object code for the module. This
can be useful if codeisto be loaded on aremote node in a distributed system. For example, loading module Modul e
on anode Node is done asfollows:

t;ﬁodule, Binary, Filename} = code:get object code(Module),
rpc:call(Node, code, load binary, [Module, Filename, Binary]),

root dir() -> file:filenane()
Returns the root directory of Erlang/OTP, which isthe directory whereit isinstalled.
Example:

> code:root dir().
"/usr/local/otp"

lib dir() -> file:filename()
Returns the library directory, $OTPROCT/ | i b, where $OTPROOCT isthe root directory of Erlang/OTP.

Ericsson AB. All Rights Reserved.: Kernel | 27

code

Example:

> code:lib dir().
"/usr/local/otp/lib"

lib dir(Name) -> file:filename() | {error, bad name}
Types:
Name = atom()

Returnsthe path for the "library directory", the top directory, for an application Nane located under $OTPROOT/ | i b
or on adirectory referred to with environment variable ERL_LI BS.

If aregular directory called Name or Nane- Vsn exists in the code path with an ebi n subdirectory, the path to this
directory isreturned (not the ebi n directory).

If the directory refers to a directory in an archive, the archive name is stripped away before the path is returned.
For example, if directory /usr/ 1 ocal /ot p/lib/ mesia-4.2.2. ez/ mesi a-4.2.2/ebin isin the
path, / usr/ 1 ocal / ot p/ 1 i b/ mesi a- 4. 2. 2/ ebi n isreturned. This means that the library directory for an
application isthe same, regardlessif the application residesin an archive or not.

Example:

> code:lib dir(mnesia).
"/usr/local/otp/lib/mnesia-4.2.2"

Returns{ error, bad_nane} if Nane isnot the name of an application under SOTPROOT/ | i b or on adirectory
referred to through environment variable ERL_ LI BS. Fails with an exception if Nane has the wrong type.

Warning:
For backward compatibility, Nane is also allowed to be a string. That will probably changein afuture release.

lib dir(Name, SubDir) -> file:filenane() | {error, bad name}
Types.
Name = SubDir = atom()
Returnsthe path to a subdirectory directly under the top directory of an application. Normally the subdirectoriesreside
under the top directory for the application, but when applications at |east partly resides in an archive, the situation is

different. Some of the subdirectories can reside as regular directories while other reside in an archive file. It is not
checked whether this directory exists.

Example:
> code:lib dir(megaco, priv).

"/usr/local/otp/lib/megaco-3.9.1.1/priv"

Fails with an exception if Nane or SubDi r has the wrong type.

28 | Ericsson AB. All Rights Reserved.: Kernel

code

compiler dir() -> file:filename()

Returns the compiler library directory. Equivalenttocode: | i b_di r (conpil er).

priv_dir(Name) -> file:filenane() | {error, bad name}
Types:
Name = atom()
Returns the path to the pr i v directory in an application. Equivalentto code: | i b_di r (Name, priv).

Warning:
For backward compatibility, Nane is also allowed to be a string. That will probably changein afuture release.

objfile extension() -> nonempty string()
Returns the object code file extension corresponding to the Erlang machine used, namely . beam

stick dir(Dir) -> ok | error
Types:

Dir = file:fil enanme()
MarksDi r as sticky.
Returns ok if successful, otherwiseer r or .

unstick dir(Dir) -> ok | error
Types:

Dir = file:fil enanme()
Unsticks adirectory that is marked as sticky.
Returns ok if successful, otherwiseer r or .

is sticky(Module) -> boolean()
Types:
Module = module()

Returnst r ue if Modul e is the name of a module that has been loaded from a sticky directory (in other words: an
attempt to reload the module will fail), or f al se if Modul e isnot aloaded module or is not sticky.

where is file(Filename) -> non_existing | Absname
Types:
Filename = Absname = file:fil enane()

Searches the code path for Fi | enane, afile of arbitrary type. If found, the full name is returned. non_exi st i ng
isreturned if the file cannot be found. The function can be useful, for example, to locate application resource files.

clash() -> ok
Searches al directories in the code path for module names with identical names and writes areport to st dout .

Ericsson AB. All Rights Reserved.: Kernel | 29

code

is _module native(Module) -> true | false | undefined
Types:

Module = module()
Returns:
true

If Modul e isthe name of aloaded module that has native code loaded
fal se

If Modul e isloaded but does not have native code
undefi ned

If Mbdul e isnot loaded

get mode() -> embedded | interactive
Returns an atom describing the mode of the code server: i nt er acti ve or embedded.

Thisinformation is useful when an external entity (for example, an IDE) provides additional code for a running node.
If the code server is in interactive mode, it only has to add the path to the code. If the code server is in embedded
mode, the code must be loaded with | oad_bi nary/ 3.

30 | Ericsson AB. All Rights Reserved.: Kernel

disk log

disk log

Erlang module

di sk_| og isadisk-based term logger that enables efficient logging of items on files.
Two types of logs are supported:
halt logs

Appends itemsto asingle file, which size can be limited by the disk log module.
wrap logs

Uses a segquence of wrap log files of limited size. Asawrap log fileis filled up, further items are logged on to
the next file in the sequence, starting all over with the first file when the last file isfilled up.

For efficiency reasons, items are always written to files as binaries.
Two formats of the log files are supported:
internal format

Supports automatic repair of log files that are not properly closed and enables efficient reading of logged items
in chunks using a set of functions defined in this module. Thisisthe only way to read internally formatted logs.
An item logged to an internally formatted log must not occupy more than 4 GB of disk space (the size must fit
in 4 bytes).

external format

Leavesit up to the user to read the logged deep bytelists. The disk log module cannot repair externally formatted
logs.

For each open disk log, one process handles requests made to the disk log. This process is created when open/ 1 is
called, provided there exists no process handling the disk log. A process that opens a disk log can be an owner or an
anonymous user of the disk log. Each owner is linked to the disk log process, and an owner can close the disk log
either explicitly (by callingcl ose/ 1 orl cl ose/ 1, 2) or by terminating.

Owners can subscribe to notifications, messages of theform { di sk_| og, Node, Log, | nfo},whicharesent
from the disk log process when certain events occur, see the functions and in particular theopen/ 1 optionnot i fy.
A log can have many owners, but a process cannot own a log more than once. However, the same process can open
the log as a user more than once.

For adisk log processto closeits file properly and terminate, it must be closed by its owners and once by some non-
owner process for each time the log was used anonymously. The users are counted and there must not be any users
left when the disk log process terminates.

Itemscan belogged synchronously by using functionsl og/ 2,bl og/ 2,1 og_t er ns/ 2,andbl og_t er s/ 2. For
each of these functions, the caller is put on hold until the items are logged (but not necessarily written, usesync/ 1 to
ensurethat). By adding an a to each of the mentioned function names, we get functionsthat log itemsasynchronously.
Asynchronous functions do not wait for the disk log process to write the items to the file, but return the control to
the caller more or lessimmediately.

When using the internal format for logs, use functions| og/ 2,1 og _terns/ 2, al og/ 2, and al og_t er ns/ 2.
These functions log one or more Erlang terms. By prefixing each of the functions with a b (for "binary"), we get
the corresponding bl og() functions for the external format. These functions log one or more deep lists of bytes
or, aternatively, binaries of deep lists of bytes. For example, to log the string " hel | 0" in ASCII format, you can
usedi sk_1I og: bl og(Log, "hello0"),ordi sk_| og: bl og(Log, list _to _binary("hello")).The
two alternatives are equally efficient.

Ericsson AB. All Rights Reserved.: Kernel | 31

disk log

Thebl og() functionscan also beused for internally formatted logs, but in this case they must be called with binaries
constructed with callstot er m_t o_bi nar y/ 1. There is no check to ensure this, it is entirely the responsibility of
the caller. If these functions are called with binaries that do not correspond to Erlang terms, the chunk/ 2, 3 and
automatic repair functions fail. The corresponding terms (not the binaries) are returned when chunk/ 2, 3 iscalled.

A collection of open disk logs with the same name running on different nodes is said to be a distributed disk log if
reguests made to any of the logs are automatically made to the other logs as well. The members of such a collection
arecalled individual distributed disk logs, or just distributed disk logsif thereisno risk of confusion. Thereisno order
between the members of such a collection. For example, logged terms are not necessarily written to the node where
the request was made before written to the other nodes. However, afew functions do not make requeststo all members
of distributed disk logs, namely i nf o/ 1, chunk/ 2, 3, bchunk/ 2, 3, chunk_step/ 3,and| cl ose/ 1, 2.

An open disk log that is not a distributed disk log is said to be alocal disk log. A local disk log is only accessible
from the node where the disk 1og process runs, whereas a distributed disk log is accessible from all nodesin the Erlang
system, except for those nodeswherealocal disk |og with the same name asthedistributed disk |og exists. All processes
on nodes that have accessto alocal or distributed disk log can log items or otherwise change, inspect, or close thelog.

It is not guaranteed that all log files of a distributed disk log contain the same log items. No attempt is made to
synchronize the contents of the files. However, as long as at least one of the involved nodes is alive at each time,
all items are logged. When logging items to a distributed log, or otherwise trying to change the log, the replies from
individual logs areignored. If al nodes are down, the disk log functions reply with anonode error.

Note:

In some applications, it can be unacceptable that replies from individual logs are ignored. An alternative in such
situationsisto use many local disk logsinstead of one distributed disk log, and implement the di stribution without
use of thedi sk_| og module.

Errors are reported differently for asynchronous log attempts and other uses of the di sk_| og module. When used
synchronously, thismodule replies with an error message, but when called asynchronously, this modul e does not know
where to send the error message. Instead, owners subscribing to notificationsreceive an er r or _st at us message.

Thedi sk_| og module doesnot report errorstotheer r or _| ogger module. It isup to the caller to decide whether
toemploy theerror logger. Functionf or mat _er r or / 1 can beused to produce readable messagesfrom error replies.
However, information events are sent to the error logger in two situations, namely when alog is repaired, or when
afileis missing while reading chunks.

Error message no_such_| og means that the specified disk log is not open. Nothing is said about whether the disk
log files exist or not.

Note:

If an attempt to reopen or truncate a log fails (see r eopen/ 2, 3 andt runcat e/ 1, 2) the disk log process
terminatesimmediately. Before the processterminates, linksto ownersand blocking processes(seebl ock/ 1, 2)
are removed. The effect isthat the links work in one direction only. Any process using a disk log must check for
error message no_such_| og if some other process truncates or reopens the log simultaneously.

Data Types

log() = term()
dlog size() =

32 | Ericsson AB. All Rights Reserved.: Kernel

disk log

infinity |
integer() >= 1 |
{MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}
dlog format() = external | internal
dlog head opt() = none | term() | binary() | [dlog_byte()]
dlog byte() [dl og_byte()] | byte()
dlog mode() read only | read write
dlog type() halt | wrap
continuation()

Chunk continuation returned by chunk/ 2, 3, bchunk/ 2, 3, or chunk_st ep/ 3.
bytes() = binary() | [byte()]

invalid header() = term()

file error() = term()

Exports

accessible logs() -> {[LocallLog], [DistributedLog]}
Types:
LocalLog = DistributedLog = | og()

Returns the names of the disk logs accessible on the current node. Thefirst list containslocal disk logs and the second
list contains distributed disk logs.

alog(Log, Term) -> notify_ ret()
balog(Log, Bytes) -> notify_ret()
Types:
Log = I og()
Term = term()
Bytes = bytes()
notify ret() = ok | {error, no such log}
Asynchronously append an item to a disk log. al og/ 2 is used for internally formatted logs and bal og/ 2 for

externally formatted logs. bal og/ 2 can also be used for internally formatted logs if the binary is constructed with
acdltotermto_binary/1.

Owners subscribing to notifications receive messager ead_onl y, bl ocked_I og, or f or mat _ext er nal if the
item cannot be written on the log, and possibly one of the messages wr ap, ful | , or err or _st at us if an item
is written on the log. Message er r or _st at us is sent if something is wrong with the header function or if afile
€rror occurs.

alog terms(Log, TermList) -> notify_ret()

balog terms(Log, BytelList) -> notify_ret()
Types.

Ericsson AB. All Rights Reserved.: Kernel | 33

disk log

Log = I og()
TermList = [term()]
BytelList = [bytes()]
notify ret() = ok | {error, no such log}
Asynchronously append a list of items to a disk log. al og_t erns/ 2 is used for internally formatted logs and

bal og_t er ms/ 2 for externally formatted logs. bal og_t er ms/ 2 can aso be used for internally formatted logs if
the binaries are constructed with callstot erm t o_bi nary/ 1.

Owners subscribing to notifications receive messager ead_onl y, bl ocked_I og, or f or mat _ext er nal if the
items cannot be written on the log, and possibly one or more of the messageswr ap, ful | , and er r or _st at us
if items are written on the log. Message er r or _st at us is sent if something is wrong with the header function or
if afile error occurs.

block(Log) -> ok | {error, block_error_rsn()}
block(Log, QueueLogRecords) -> ok | {error, block_error_rsn()}
Types:
Log = I og()
QueuelLogRecords = boolean()
block error rsn() = no such log | nonode | {blocked log, log()}
With acall to bl ock/ 1, 2 aprocess can block alog. If the blocking processis not an owner of the log, atemporary

link is created between the disk log process and the blocking process. The link ensures that the disk log is unblocked
if the blocking process terminates without first closing or unblocking the log.

Any process can probe a blocked log with i nf o/ 1 or close it with cl ose/ 1. The blocking process can also
use functions chunk/ 2, 3, bchunk/ 2, 3, chunk_st ep/ 3, and unbl ock/ 1 without being affected by the
block. Any other attempt than those mentioned so far to update or read a blocked log suspends the calling process
until the log is unblocked or returns error message { bl ocked_| og, Log}, depending on whether the value of
QueuelLogRecords istrue orfal se. QueueLogRecor ds defaultstot r ue, whichisused by bl ock/ 1.

change header(Log, Header) -> ok | {error, Reason}

Types:
Log = 1 og()
Header =
{head, dl og_head_opt()} |
{head func, MFA :: {atom(), atom(), list()}}
Reason =
no such log |
nonode |

{read only mode, Log} |
{blocked log, Log} |
{badarg, head}

Changes the value of option head or head_f unc for an owner of adisk log.

change notify(Log, Owner, Notify) -> ok | {error, Reason}
Types:

34 | Ericsson AB. All Rights Reserved.: Kernel

disk log

Log = I og()
Owner = pid()
Notify = boolean()
Reason =
no such log |
nonode |
{blocked log, Log} |
{badarg, notify} |
{not_owner, Owner}

Changesthe value of option not i fy for an owner of adisk log.

change size(Log, Size) -> ok | {error, Reason}
Types:

Log = 1 0g()
Size = dl og_si ze()
Reason =
no such log |
nonode |
{read only mode, Log} |
{blocked log, Log} |
{new size too small, CurrentSize :: integer() >= 1} |
{badarg, size} |
{file error, file:filenane(), file_error()}

Changesthe size of an openlog. For ahalt log, the size can always beincreased, but it cannot be decreased to something
less than the current file size.

For awrap log, both the size and the number of files can always be increased, as long as the number of files does
not exceed 65000. If the maximum number of files is decreased, the change is not valid until the current file is full
and the log wraps to the next file. The redundant files are removed the next time the log wraps around, that is, starts
to log to file number 1.

As an example, assume that the old maximum number of filesis 10 and that the new maximum number of filesis 6.
If the current file number is not greater than the new maximum number of files, files 7-10 are removed when file 6
isfull and the log starts to write to file number 1 again. Otherwise, the files greater than the current file are removed
when the current file is full (for example, if the current file is 8, files 9 and 10 are removed). The files between the
new maximum number of files and the current file (that is, files 7 and 8) are removed the next time file 6 is full.

If the size of the files is decreased, the change immediately affects the current log. It does not change the size of log
files aready full until the next time they are used.

If the log size is decreased, for example, to save space, functioni nc_w ap_fi |l e/ 1 can be used to force the log
to wrap.

chunk(Log, Continuation) -> chunk_ret()
chunk(Log, Continuation, N) -> chunk_ret()
bchunk(Log, Continuation) -> bchunk_ret ()
bchunk(Log, Continuation, N) -> bchunk _ret()
Types.

Ericsson AB. All Rights Reserved.: Kernel | 35

disk log

Log = I og()

Continuation = start | continuation()
N = integer() >= 1 | infinity

chunk ret() =

{Continuation2 :: continuation(), Terms :: [term()]} |
{Continuation2 :: continuation(),

Terms :: [term()],

Badbytes :: integer() >= 0} |
eof |

{error, Reason :: chunk_error_rsn()}

bchunk ret() =

{Continuation2 :: continuation(), Binaries :: [binary()1} |
{Continuation2 :: continuation(),

Binaries :: [binary()],

Badbytes :: integer() >= 0} |

eof |

{error, Reason :: chunk_error_rsn()}

chunk error _rsn() =
no such log |
{format_external, log()} |
{blocked log, log()?} |
{badarg, continuation} |
{not_internal wrap, log()} |
{corrupt log file, FileName :: file:filenanme()} |
{file error, file:filename(), file_error()}

Efficiently reads the terms that are appended to an internally formatted log. It minimizes disk 1/0O by reading 64
kilobyte chunks from the file. Functions bchunk/ 2, 3 return the binaries read from the file, they do not call
bi nary_to_term() . Apart from that, they work just like chunk/ 2, 3.

The first time chunk() (or bchunk()) iscalled, aninitia continuation, the atom st ar t , must be provided. If a
disk log process is running on the current node, terms are read from that log. Otherwise, an individual distributed log
on some other node is chosen, if such alog exists.

When chunk/ 3 iscalled, N controls the maximum number of termsthat are read from thelog in each chunk. Defaults
toi nfi nity, which meansthat all the terms contained in the 64 kilobyte chunk are read. If less than N terms are
returned, this does not necessarily mean that the end of thefile is reached.

chunk() returns a tuple { Conti nuati on2, Terns}, where Ter s is a list of terms found in the log.
Cont i nuat i on2 isyet another continuation, which must be passed on to any subsequent callsto chunk() . With
aseries of calsto chunk() , all terms from alog can be extracted.

chunk() returnsatuple { Conti nuati on2, Terns, Badbytes} if thelog is opened in read-only mode
and the read chunk is corrupt. Badbyt es is the number of bytes in the file found not to be Erlang terms in the
chunk. Notice that the log is not repaired. When trying to read chunks from a log opened in read-write mode, tuple
{corrupt _log file, FileName} isreturnedif theread chunk iscorrupt.

chunk() returnseof when the end of thelog isreached, or { error, Reason} if anerror occurs. If awrap log
fileis missing, a message is output on the error log.

When chunk/ 2, 3 isused with wrap logs, the returned continuation might not be valid in the next call to chunk() .
This is because the log can wrap and delete the file into which the continuation points. To prevent this, the log can
be blocked during the search.

36 | Ericsson AB. All Rights Reserved.: Kernel

disk log

chunk_info(Continuation) -> InfolList | {error, Reason}

Types.
Continuation = continuation()
InfoList = [{node, Node :: node()}, ...]

Reason = {no continuation, Continuation}

Returns the pair { node, Node}, describing the chunk continuation returned by chunk/ 2, 3, bchunk/ 2, 3, or
chunk_st ep/ 3.

Terms are read from the disk log running on Node.

chunk step(Log, Continuation, Step) ->
{ok, any()} | {error, Reason}

Types:
Log = | og()
Continuation = start | continuation()
Step = integer()

Reason =
no_such log |
end of log |

{format_external, Log} |

{blocked log, Log} |

{badarg, continuation} |

{file error, file:filename(), file_error()}

Can be used with chunk/ 2, 3 and bchunk/ 2, 3 to search through an internally formatted wrap log. It takes as
argument a continuation as returned by chunk/ 2, 3, bchunk/ 2, 3, or chunk_st ep/ 3, and steps forward (or
backward) St ep filesin the wrap log. The continuation returned, points to the first log item in the new current file.

If atom st ar t isspecified as continuation, adisk log to read terms from is chosen. A local or distributed disk log on
the current node is preferred to an individual distributed log on some other node.

If the wrap log is not full because all files are not yet used, { error, end_of | og} isreturned if trying to step
outside the log.

close(Log) -> ok | {error, close_error_rsn()}
Types:

Log = log()
close error rsn() =
no such log |
nonode |
{file error, file:filename(), file_error()}

Closes aloca or distributed disk log properly. An internally formatted log must be closed before the Erlang system
is stopped. Otherwise, the log is regarded as unclosed and the automatic repair procedure is activated next time the
log is opened.

The disk log processis not terminated as long as there are owners or users of the log. All owners must close the log,
possibly by terminating. Also, any other process, not only the processes that have opened the log anonymously, can
decrement theuser s counter by closing the log. Attemptsto close alog by aprocessthat isnot an owner areignored
if there are no users.

If thelog is blocked by the closing process, the log is aso unblocked.

Ericsson AB. All Rights Reserved.: Kernel | 37

disk log

format _error(Error) -> io_lib:chars()
Types:
Error = term()

Giventheerror returned by any function in this module, this function returns adescriptive string of the error in English.
For file errors, functionf or mat _error/ 1 inmodulefi | e iscalled.

inc wrap file(Log) -> ok | {error, inc_wap_error_rsn()}
Types.

Log = log()
inc_wrap _error _rsn() =
no_such log |
nonode |
{read only mode, log()} |
{blocked log, log()} |
{halt_log, log()} |
{invalid header, invalid_header()} |
{file error, file:filenane(), file_error()}

invalid header() = term()

Forces the internally formatted disk log to start logging to the next log file. It can be used, for example, with
change_si ze/ 2 to reduce the amount of disk space allocated by the disk log.

Owners subscribing to notifications normally receive a w ap message, but if an error occurs with a reason tag of
i nval i d_header orfile_error,anerror_status messageissent.

info(Log) -> InfoList | {error, no_such log}
Types:

Log = [og()
InfolList = [dlog_info()]
dlog info() =
{name, Log :: log()} |
{file, File :: file:filenane()} |
{type, Type :: dlog_type()} |
{format, Format :: dlog_format()} |
{size, Size :: dlog_size()} |
{mode, Mode :: dl og_node()} |
{owners, [{pid(), Notify :: boolean()}1} |
{users, Users :: integer() >= 0} |
{status,
Status :: ok | {blocked, QueueLogRecords :: boolean()}} |
{node, Node :: node()} |
{distributed, Dist :: local | [node()]} |

{head,
Head ::

none | {head, term()} | (MFA :: {atom(), atom(), list()})} |
{no _written items, NoWrittenItems :: integer() >= 0} |

{full, Full :: boolean} |
{no_current bytes, integer() >
{no_current_items, integer() >
{no_items, integer() >= 0} |

0} |
0}

38 | Ericsson AB. All Rights Reserved.: Kernel

disk log

{current_file, integer() >= 1} |
{no_overflows,
{SinceLogWasOpened :: integer() >= 0,
SincelLastInfo :: integer() >= 0}}

Returnsalist of { Tag, Val ue} pairsdescribing the log. If adisk log process is running on the current node, that
log is used as source of information, otherwise an individual distributed log on some other node is chosen, if such
alog exists.

The following pairs are returned for all logs:
{nane, Log}

Log isthelog name as specified by the open/ 1 option nane.
{file, File}

For halt logs Fi | e isthefilename, and for wrap logs Fi | e is the base name.
{type, Type}

Type isthelog type as specified by theopen/ 1 optiont ype.
{format, Fornat}

For mat isthelog format as specified by theopen/ 1 option f or nat .
{size, Size}

Si ze isthelog size as specified by theopen/ 1 option si ze, or the size set by change_si ze/ 2. Thevalue
set by change_si ze/ 2 isreflected immediately.

{node, Mode}
Mbde isthelog mode as specified by the open/ 1 option node.
{owners, [{pid(), Notify}]}

Not i fy isthe value set by the open/ 1 option not i fy or function change_noti fy/ 3 for the owners of
the log.

{users, Users}

User s isthe number of anonymous users of the log, seethe open/ 1 option | i nkt o.
{status, Status}

St at us isok or { bl ocked, QueuelLogRecor ds} asset by functionsbl ock/ 1, 2 and unbl ock/ 1.
{node, Node}

The information returned by the current invocation of function i nf o/ 1 is gathered from the disk log process
running on Node.

{distributed, Dist}

If thelogislocal onthecurrent node, Di st hasthevaluel ocal , otherwiseal nodeswherethelogisdistributed
arereturned asalist.

The following pairs are returned for all logs openedinr ead_wr i t e mode:
{head, Head}

Depending on the value of the open/1 options head and head func, or set by function
change_header/ 2, the value of Head is none (default), { head, H} (head option), or { M F, A}
(head_f unc option).

Ericsson AB. All Rights Reserved.: Kernel | 39

disk log

{no_witten_itens, NoWittenltens}

NoW i tt enl t ens isthe number of itemswritten to the log since the disk log process was created.
The following pair isreturned for halt logs opened inr ead_wr i t e mode:
{full, Full}

Ful | istrue orf al se depending on whether the halt log is full or not.
The following pairs are returned for wrap logs openedinr ead_wr i t e mode:
{no_current_bytes, integer() >= 0}

The number of bytes written to the current wrap log file.
{no_current _itens, integer() >= 0}

The number of items written to the current wrap log file, header inclusive.
{no_itens, integer() >= 0}

The total number of itemsin all wrap log files.
{current_file, integer()}

The ordinal for the current wrap log filein therange 1. . MaxNoFi | es, where MaxNoFi | es is specified by
theopen/ 1 option si ze or set by change_si ze/ 2.

{no_overfl ows, {SinceLogWasOpened, SincelLastlInfo}}

Si nceLogWasOpened (Si ncelLast | nf 0) isthe number of times awrap log file has been filled up and a
new oneisopened ori nc_w ap_fil e/ 1 hasbeen called since the disk log was last opened (i nf o/ 1 was
last called). Thefirsttimei nf o/ 2 iscalled after alog was (re)opened or truncated, the two values are equal.

Notice that functions chunk/ 2, 3, bchunk/ 2, 3, and chunk_st ep/ 3 do not affect any value returned by
i nfoll.

lclose(Log) -> ok | {error, Iclose_error_rsn()}
lclose(Log, Node) -> ok | {error, Iclose_error_rsn()}
Types:

Log = I og()
Node = node()

lclose error _rsn() =
no such log | {file error, file:filename(), file_error()}

| cl ose/ 1 closesalocal log or anindividual distributed log on the current node.

| cl ose/ 2 closes an individual distributed log on the specified node if the node is not the current one.
| cl ose(Log) isequivalenttol cl ose(Log, node()).Seedsocl ose/ 1.

If no log with the specified name exist on the specified node, no_such_I og isreturned.

log(Log, Term) -> ok | {error, Reason :: log_error_rsn()}
blog(Log, Bytes) -> ok | {error, Reason :: log_error_rsn()}
Types:

Log = 1 0g()

Term = term()
Bytes = bytes()
log error rsn() =

40 | Ericsson AB. All Rights Reserved.: Kernel

disk log

no_such log |

nonode |

{read only mode, log()} |

{format_external, log()} |

{blocked log, log()} |

{full, lTog()} |

{invalid header, invalid_header()} |

{file error, file:filename(), file_error()}

Synchronously appends aterm to adisk log. Returnsok or { er r or, Reason} when the termiswritten to disk. If
thelog isdistributed, ok isreturned, unless all nodes are down. Terms are written by the ordinary wr i t e() function
of the operating system. Hence, it is not guaranteed that the term iswritten to disk, it can linger in the operating system
kernel for awhile. To ensure that the item is written to disk, function sync/ 1 must be called.

| og/ 2 isused for internally formatted logs, and bl og/ 2 for externally formatted logs. bl og/ 2 can also be used
for internally formatted logs if the binary is constructed withacall to t erm t o_bi nary/ 1.

Owners subscribing to notifications are notified of an error with an er r or _st at us message if the error reason tag
isi nval i d_header orfile_error.

log terms(Log, TermList) ->

ok | {error, Resaon :: log_error_rsn()}
blog terms(Log, BytesList) ->
ok | {error, Reason :: log_error_rsn()}
Types:
Log = 1 og()

TermList = [term()]
BytesList = [bytes()]
log error _rsn() =
no_such log |
nonode |
{read only mode, log()} |
{format_external, log()} |
{blocked log, log()} |
{full, log()} |
{invalid header, invalid_header()} |
{file error, file:filenane(), file_error()}

Synchronously appends alist of itemsto thelog. It is more efficient to use these functionsinstead of functions!| og/ 2
and bl og/ 2. The specified list is split into as large sublists as possible (limited by the size of wrap log files), and
each sublist islogged as one single item, which reduces the overhead.

log terns/ 2 is used for internaly formatted logs, and bl og terns/ 2 for externaly formatted logs.
bl og_terns/ 2 can dso be used for internaly formatted logs if the binaries are constructed with calls to
termto_binary/1.

Owners subscribing to notifications are notified of an error with an er r or _st at us message if the error reason tag
isi nval i d_header orfile_error.

open(ArgL) -> open_ret() | dist_open_ret()
Types:

Ericsson AB. All Rights Reserved.: Kernel | 41

disk log

ArgL = dl og_options()
dlog options() = [dl og_option()]
dlog option() =

{name, Log :: log()} |

{file, FileName :: file:filenanme()} |
{linkto, LinkTo :: none | pid()} |

{repair, Repair :: true | false | truncate} |

{type, Type :: dlog type} |

{format, Format :: dlog format()} |

{size, Size :: dlog_size()} |

{distributed, Nodes :: [node()]1} |

{notify, boolean()} |

{head, Head :: dl og_head_opt()} |

{head func, MFA :: {atom(), atom(), list()}} |
{mode, Mode :: dl og node()}

open ret() =ret() | {error, open_error_rsn()}

ret() =
{ok, Log :: log()} |
{repaired,
Log :: log(),
{recovered, Rec :: integer() >= 0},

{badbytes, Bad :: integer() >= 0}}
dist open ret() =

{[{node(), ret()}], [{node(), {error, dist _error_rsn()}}1}
dist error _rsn() nodedown | open_error_rsn()

open_error_rsn()
no_such log |
{badarg, term()} |
{size mismatch,
CurrentSize :: dl og_size(),
NewSize :: dlog_size()} |
{arg_mismatch,
OptionName :: dlog optattr(),

CurrentValue :: term(),

Value :: term()} |

{name_already open, Log :: log()} |

{open_read write, Log :: log()} |

{open_read only, Log :: log()} |

{need repair, Log :: log()} |

{not_a log file, FileName :: file:filename()} |
{invalid_index file, FileName :: file:filenanme()} |

{invalid header, invalid_header()} |
{file error, file:filename(), file_error()} |
{node_already open, Log :: log()}
dlog optattr() =
name |
file |
linkto |
repair |
type |

42 | Ericsson AB. All Rights Reserved.: Kernel

disk log

format |

size |

distributed |

notify |

head |

head func |

mode

dlog size() =

infinity |

integer() >= 1 |

{MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}
Parameter Ar gL isalist of the following options:
{nane, Log}

Specifies the log name. This name must be passed on as a parameter in all subsequent logging operations. A
name must always be supplied.

{file, FileNane}

Specifies the name of the file to be used for logged terms. If this value is omitted and the log name is an atom or
astring, the filename defaultsto | i st s: concat ([Log, ".LOG']) for haltlogs.

For wrap logs, this is the base name of thefiles. Each filein awrap log iscaled <base_nane>. N, where Nis
an integer. Each wrap log also hastwo files called <base_nane>. i dx and <base_nane>. si z.

{l'i nkto, LinkTo}

If Li nkTo is a pid, it becomes an owner of the log. If Li nkTo is none, the log records that it is used
anonymously by some process by incrementing the user s counter. By default, the process that calls open/ 1
ownsthe log.

{repair, Repair}

If Repair istrue, the current log file is repaired, if needed. As the restoration is initiated, a message is
output on the error log. If f al se is specified, no automatic repair is attempted. Instead, the tuple { er r or,
{need_repair, Log}} isreturnedif anattemptismadetoopenacorruptlogfile. Ift r uncat e isspecified,
the log file becomes truncated, creating an empty log. Defaults to t r ue, which has no effect on logs opened
in read-only mode.

{type, Type}

Thelog type. Defaultsto hal t .
{format, Fornat}

Disk log format. Defaultstoi nt er nal .
{size, Size}

Logsize.

When ahalt log hasreached itsmaximum size, all attemptstolog moreitemsarerejected. Defaultstoi nfi ni ty,
which for halt implies that there is no maximum size.

For wrap logs, parameter Si ze can be a pair { MaxNoByt es, MaxNoFi | es} ori nfinity. Inthe latter
casg, if thefiles of an existing wrap log with the same name can be found, the size is read from the existing wrap
log, otherwise an error is returned.

Wrap logs write at most MaxNoByt es bytes on each file and use MaxNoFi | es files before starting al over
with the first wrap log file. Regardless of MaxNoByt es, at least the header (if there is one) and one item are
written on each wrap log file before wrapping to the next file.

Ericsson AB. All Rights Reserved.: Kernel | 43

disk log

When opening an existing wrap log, it is not necessary to supply a value for option Si ze, but any supplied
value must equal the current log size, otherwisethetuple{error, {size_mi smatch, CurrentSi ze,
NewSi ze} } isreturned.

{di stributed, Nodes}

This option can be used for adding members to a distributed disk log. Defaultsto [] , which means that the log
islocal on the current node.

{notify, boolean()}

If t r ue, thelog owners are notified when certain log events occur. Defaultsto f al se. The owners are sent one
of the following messages when an event occurs:

{di sk _log, Node, Log, {wap, NoLostltens}}

Sent when awrap log has filled up one of its files and anew file is opened. NoLost | t enrs is the number
of previously logged items that were lost when truncating existing files.

sk_l og, Node, Log, {truncated, NolLostltens}}

{di
Sent when alog is truncated or reopened. For halt logs NoLost | t ens is the number of items written on

the log since the disk log process was created. For wrap logs NoLost | t ens is the number of items on
al wrap log files.

{di

sk |l og, Node, Log, {read only, Itens}}

Sent when an asynchronous log attempt is made to alog file opened in read-only mode. | t ens istheitems
from the log attempt.

{di

sk |1 og, Node, Log, {blocked |og, Itens}}

Sent when an asynchronous log attempt is made to a blocked log that does not queue log attempts. | t errs
isthe items from the log attempt.

{di sk_l og, Node, Log, {format_external, Itens}}
Sent when function al og/ 2 or al og_t er ns/ 2 isused for internally formatted logs. | t ens istheitems
from the log attempt.

{di sk _|og, Node, Log, full}

Sent when an attempt to log items to awrap log would write more bytes than the limit set by option si ze.

{di sk _log, Node, Log, {error_status, Status}}

Sent when the error status changes. The error status is defined by the outcome of the last attempt to log
items to the log, or to truncate the log, or the last use of function sync/1,inc_wap_file/l, or
change_si ze/ 2. St at us iseitherok or {error, Error},theformeristheinitia value.

{head, Head}

Specifies a header to be written first on the log file. If thelog isawrap log, the item Head iswritten first in each
new file. Head isto be aterm if the format isi nt er nal , otherwise adeep list of bytes (or a binary). Defaults
to none, which means that no header iswritten first on thefile.

{head_func, {MF, A}}

Specifies afunction to be called each time anew log fileis opened. Thecall M F(A) isassumed to return { ok,
Head} . Theitem Head iswritten first in each file. Head isto be aterm if theformat isi nt er nal , otherwise
adeep list of bytes (or abinary).

{node, Mode}

Specifiesif the log isto be opened in read-only or read-write mode. Defaultstor ead_wri t e.

44 | Ericsson AB. All Rights Reserved.: Kernel

disk log

open/ 1 returns { ok, Log} if the log file is successfully opened. If the file is successfully repaired, the tuple
{repaired, Log, {recovered, Rec}, {badbytes, Bad}} isreturned, where Rec isthe number
of whole Erlang terms found in the file and Bad is the number of bytes in the file that are non-Erlang terms. If the
parameter di st ri but ed is specified, open/ 1 returns a list of successful replies and a list of erroneous replies.
Each reply is tagged with the node name.

When adisk log is opened in read-write mode, any existing log fileis checked for. If thereis none, anew empty log is
created, otherwise the existing file is opened at the position after the last logged item, and the logging of items starts
from there. If the format isi nt er nal and the existing file is not recognized as an internally formatted log, a tuple
{error, {not_a log file, FileNane}} isreturned.

open/ 1 cannot be used for changing the values of options of an open log. When there are prior owners or users of
alog, all option values except name, | i nkt 0, and not i fy are only checked against the values supplied before as
option valuesto functionopen/ 1, change_header/ 2,change_noti fy/ 3,orchange_si ze/ 2. Thus, none
of the options except nane is mandatory. I1f some specified value differs from the current value, atuple { er r or,
{arg_m smatch, OptionNane, CurrentVal ue, Val ue}} isreturned.

Note:

If an owner attempts to open alog as owner once again, it is acknowledged with the return value { ok, Log},
but the state of the disk log is not affected.

If alog with a specified name islocal on some node, and one tries to open the log distributed on the same node, the
tuple{error, {node_already_open, Log}} isreturned. Thesametupleisreturnedif thelog is distributed
on some node, and one tries to open the log locally on the same node. Opening individual distributed disk logs for the
first time adds those logs to a (possibly empty) distributed disk log. The supplied option values are used on all nodes
mentioned by option di st ri but ed. Individua distributed logs know nothing about each other's option values, so
each node can be given unique option values by creating a distributed log with many callsto open/ 1.

A log file can be opened more than once by giving different values to option nane or by using the same file when
distributing alog on different nodes. It is up to the user of module di sk_| og to ensure that not more than one disk
log process has write access to any file, otherwise the file can be corrupted.

If an attempt to open a log file for the first time fails, the disk log process terminates with the EXIT message
{{failed, Reason}, [{di sk_| og, open, 1}]}. The function returns { error, Reason} for al other
errors.

pid2name(Pid) -> {ok, Log} | undefined

Types.
Pid = pid()
Log = I og()

Returns the log name given the pid of adisk log process on the current node, or undef i ned if the specified pid is
not adisk log process.

This function is meant to be used for debugging only.

reopen(Log, File) -> ok | {error, reopen_error_rsn()}
reopen(Log, File, Head) -> ok | {error, reopen_error_rsn()}
breopen(Log, File, BHead) -> ok | {error, reopen_error_rsn()}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 45

disk log

Log = I og()
File = file:fil ename()
Head = term()
BHead = bytes()
reopen_error _rsn() =
no_such log |
nonode |
{read only mode, log()} |
{blocked log, log()} |
{same_file name, log()} |
{invalid index file, file:filename()} |
{invalid_header, invalid_header()} |
{file error, file:filenanme(), file_error()}

Renamesthelog fileto Fi | e and then recreatesanew log file. If awrap log exists, Fi | e isused as the base name of
the renamed files. By default the header givento open/ 1 iswritten first in the newly opened log file, but if argument
Head or BHead is specified, thisitem is used instead. The header argument is used only once. Next time awrap log
file is opened, the header given to open/ 1 isused.

r eopen/ 2, 3 are used for internally formatted logs, and br eopen/ 3 for externally formatted logs.
Owners subscribing to notifications receive at r uncat e message.

Upon failure to reopen the log, the disk log process terminates with the EXIT message {{fai |l ed, Error},
[{disk_|og, Fun, Arity}]}. Other processes having requests queued receive the message { di sk_I og,
Node, {error, disk_|log_stopped}}.

sync(Log) -> ok | {error, sync_error_rsn()}
Types:
Log = 1 og()
sync_error_rsn() =
no_such log |
nonode |
{read only mode, log()} |
{blocked log, log()} |
{file error, file:filenanme(), file_error()}

Ensures that the contents of the log are written to the disk. Thisis usually arather expensive operation.

truncate(Log) -> ok | {error, trunc_error_rsn()}
truncate(Log, Head) -> ok | {error, trunc_error_rsn()}
btruncate(Log, BHead) -> ok | {error, trunc_error_rsn()}
Types.

Log = 1 0g()

Head = term()

BHead = bytes()

trunc_error_rsn() =
no such log |
nonode |
{read_only_mode, log()} |
{blocked log, log()} |

46 | Ericsson AB. All Rights Reserved.: Kernel

disk log

{invalid header, invalid_header()} |
{file error, file:filename(), file_error()}

Removes all items from a disk log. If argument Head or BHead is specified, thisitem is written first in the newly
truncated log, otherwise the header given to open/ 1 is used. The header argument is used only once. Next time a
wrap log fileis opened, the header givento open/ 1 is used.

truncat e/ 1, 2 are used for internally formatted logs, and bt r uncat e/ 2 for externally formatted logs.
Owners subscribing to notifications receiveat r uncat e message.

If the attempt to truncate thelog fails, the disk log processterminateswith the EXIT message{ { f ai | ed, Reason},
[{di sk _|og, Fun, Arity}]}. Other processes having requests queued receive the message {di sk_| og,
Node, {error, disk_|og stopped}}.

unblock(Log) -> ok | {error, unblock_error_rsn()}
Types:
Log = 1 0g()
unblock error rsn() =
no_such log |
nonode |
{not _blocked, log()?} |
{not_blocked by pid, log()}

Unblocks alog. A log can only be unblocked by the blocking process.

See Also
file(3),pg2(3),wap_| og reader(3)

Ericsson AB. All Rights Reserved.: Kernel | 47

erl_boot_server

erl_boot_server

Erlang module

This server is used to assist diskless Erlang nodes that fetch all Erlang code from another machine.

This server is used to fetch all code, including the start script, if an Erlang runtime system is started with command-
lineflag - | oader i net. All hosts specified with command-line flag - host s Host must have one instance of
this server running.

This server can be started with the Kernel configuration parameter st art _boot _ser ver.

Theer| boot server canreadregular filesand filesin archives. Seecode(3) ander| _pri m| oader (3)
in ERTS.

Warning:

The support for loading code from archive files is experimental. It is released before it is ready to obtain early
feedback. Thefile format, semantics, interfaces, and so on, can be changed in a future release.

Exports

add slave(Slave) -> ok | {error, What}

Types:
Slave = Host
Host = atom()
What = any()

AddsaSl ave nodeto thelist of allowed slave hosts.

delete slave(Slave) -> ok | {error, What}

Types:
Slave = Host
Host = atom()
What = any()

Deletesa Sl ave node from the list of allowed save hosts.

start(Slaves) -> {ok, Pid} | {error, What}
Types:
Slaves = [Host]
Host = atom()
Pid = pid()
What = any()
Startsthe boot server. Sl aves isalist of IP addressesfor hosts, which are allowed to use this server as aboot server.

48 | Ericsson AB. All Rights Reserved.: Kernel

erl_boot_server

start link(Slaves) -> {ok, Pid} | {error, What}

Types.
Slaves = [Host]
Host = atom()
Pid = pid()
What = any()

Startsthe boot server and linksto the caller. Thisfunctionisused to start the server if itisincludedin asupervision tree.

which slaves() -> Slaves
Types:

Slaves = [Host]

Host = atom()

Returns the current list of allowed slave hosts.

SEE ALSO

erts:init(3),erts:erl_primloader(3)

Ericsson AB. All Rights Reserved.: Kernel | 49

erl_ddll

erl_ddll

Erlang module

This module provides an interface for loading and unloading Erlang linked-in driversin runtime.

Note:

This is a large reference document. For casual use of this module, and for most real world applications, the
descriptions of functions| oad/ 2 and unl oad/ 1 are enough to getting started.

The driver isto be provided as a dynamically linked library in an object code format specific for the platform in use,
thatis, . so fileson most Unix systemsand . ddl fileson Windows. An Erlang linked-in driver must provide specific
interfacesto the emulator, so thismoduleis not designed for loading arbitrary dynamic libraries. For moreinformation
about Erlang drivers, seeerts: erl _dri ver .

When describing a set of functions (that is, a module, a part of a module, or an application), executing in a process
and wanting to use addll-driver, we use theterm user. A process can have many users (different modul es needing the
same driver) and many processes running the same code, making up many users of adriver.

Inthe basic scenario, each user loadsthe driver before starting to useit and unloadsthe driver when done. Thereference
counting keeps track of processes and the number of loads by each process. This way the driver is only unloaded
when no one wantsit (it has no user). The driver also keeps track of ports that are opened to it. This enables delay of
unloading until all ports are closed, or killing of all ports that use the driver when it is unloaded.

Theinterface supports two basic scenarios of loading and unloading. Each scenario can a so have the option of either
killing ports when the driver is unloading, or waiting for the ports to close themselves. The scenarios are as follows:

Load and Unload on a" When Needed Basis'

This (most common) scenario simply supports that each user of the driver loads it when needed and unloads it
when no longer needed. The driver isawaysreference counted and as long as a process keeping the driver loaded
isdtill alive, the driver is present in the system.

Each user of the driver use literally the same pathname for the driver when demanding load, but the users are
not concerned with if the driver is already loaded from the file system or if the object code must be loaded from
file system.

The following two pairs of functions support this scenario:
load/2 and unload/1

When using the| oad/ unl oad interfaces, the driver is not unloaded until the last port using the driver is
closed. Function unl oad/ 1 can return immediately, as the users have no interrest in when the unloading
occurs. The driver is unloaded when no one needs it any longer.

If aprocess having the driver loaded dies, it has the same effect as if unloading is done.

When loading, function | oad/ 2 returns ok when any instance of the driver is present. Thus, if adriver is
waiting to get unloaded (because of open ports), it ssmply changes state to no longer need unloading.

load_driver/2 and unload_driver/1

These interfaces are intended to be used when it is considered an error that ports are open to adriver that no
user has loaded. The portsthat are still open when the last user callsunl oad_dri ver/ 1 or when the last
process having the driver loaded dies, are killed with reason dr i ver _unl oaded.

50 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

The function names| oad_dri ver andunl oad_dri ver arekept for backward compatibility.
L oading and Reloading for Code Replacement

This scenario can occur if the driver code needs replacement during operation of the Erlang emulator.
Implementing driver code replacement is alittle more tedious than Beam code replacement, as one driver cannot
be loaded as both "old" and "new" code. All users of adriver must have it closed (no open ports) before the old
code can be unloaded and the new code can be loaded.

The unloading/loading is done as one atomic operation, blocking all processesin the system from using thedriver
in question while in progress.

The preferred way to do driver code replacement is to let one single process keep track of the driver. When
the process starts, the driver isloaded. When replacement is required, the driver is reloaded. Unload is probably
never done, or done when the process exits. If more than one user has a driver loaded when code replacement is
demanded, the replacement cannot occur until the last "other" user has unloaded the driver.

Demanding reload when areload is already in progress is always an error. Using the high-level functions, it is
aso an error to demand rel oading when more than one user has the driver loaded.

To simplify driver replacement, avoid designing your system so that more than one user has the driver loaded.

The two functions for reloading drivers are to be used together with corresponding load functions to support the
two different behaviors concerning open ports:

load/2 and reload/2
This pair of functionsis used when reloading is to be done after the last open port to the driver is closed.

Asr el oad/ 2 waits for the reloading to occur, a misbehaving process keeping open ports to the driver
(or keeping the driver loaded) can cause infinite waiting for reload. Time-outs must be provided outside of
the process demanding the reload or by using the low-level interfacetry | oad/ 3 in combination with
driver monitors.

load_driver/2 and reload_driver/2

This pair of functions are used when open ports to the driver are to be killed with reason
dri ver _unl oaded to alow for new driver code to get loaded.

However, if another process has the driver loaded, calling rel oad_dri ver returns error code
pendi ng_pr ocess. Asstated earlier, the recommended design isto not allow other usersthan the"driver
reloader” to demand loading of the driver in question.

Data Types

driver() = iolist() | atom()
path() = string() | atom()

Exports

demonitor(MonitorRef) -> ok
Types.
MonitorRef = reference()

Removes adriver monitor in much the sameway aser | ang: denoni t or/ 1 in ERTS does with process monitors.
For details about how to create driver monitors, seenoni tor/ 2,try_| oad/ 3,andtry_unl oad/ 2.

The function throws abadar g exception if the parameter isnot ar ef er ence() .

Ericsson AB. All Rights Reserved.: Kernel | 51

erl_ddll

format _error(ErrorDesc) -> string()
Types.
ErrorDesc = term()

Takes an Er r or Desc returned by load, unload, or reload functions and returns a string that describes the error or
warning.

Note:

Because of peculiarities in the dynamic loading interfaces on different platforms, the returned string is only
guaranteed to describe the correct error if format_error/1iscalled in the sameinstance of the Erlang virtual
machine asthe error appeared in (meaning the same operating system process).

info() -> AllInfolList
Types:
AllInfoList = [DriverInfo]
DriverInfo = {DriverName, InfolList}
DriverName = string()
InfoList = [InfoIltem]
InfoItem = {Tag :: atom(), Value :: term()}

Returnsalist of tuples{ Dri ver Nane, | nfolList}, wherel nfolLi st istheresult of calingi nf o/ 1 for that
Dr i ver Nane. Only dynamically linked-in drivers are included in the list.

info(Name) -> InfolList

Types:
Name = driver ()
InfoList = [InfoIltem, ...]

InfoItem = {Tag :: atom(), Value :: term()}

Returns a list of tuples{ Tag, Val ue}, where Tag is the information item and Val ue is the result of calling
i nf o/ 2 withthisdriver name and thistag. Theresultisatuplelist containing al information available about adriver.

The following tags appearsin the list:

e processes

e driver_options

e port_count

 linked_in_driver

e pernanent

e awaiting_load

e awaiting_unl oad

For a detailed description of each value, seei nf o/ 2.

The function throws abadar g exception if the driver is not present in the system.

info(Name, Tag) -> Value
Types:

52 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

Name = driver()

Tag =
processes |
driver options |
port count |
linked in driver |
permanent |
awaiting load |
awaiting unload

Value = term()

Returns specific information about one aspect of a driver. Parameter Tag specifies which aspect to get information
about. The return Val ue differs between different tags:

processes

Returns all processes containing users of the specific driversasalist of tuples{ pi d(), i nteger() >= 0},
wherei nt eger () denotesthe number of usersin processpi d() .

driver_options

Returns alist of the driver options provided when loading, and any options set by the driver during initialization.
Theonly valid optioniski | | _ports.

port_count

Returns the number of ports(ani nt eger () >= 0) using the driver.
Il inked_in_driver

Returnsabool ean() , whichist r ue if thedriver isastaticaly linked-in one, otherwisef al se.
per manent

Returns abool ean(), whichist r ue if the driver has made itself permanent (and is not a statically linked-
in driver), otherwisef al se.

awai ti ng_| oad

Returns a list of all processes having monitors for | oadi ng active. Each process is returned as
{pid(),integer() >= 0},wherei nteger () isthenumber of monitors held by process pi d() .

awai ti ng_unl oad

Returns a list of all processes having monitors for unl oadi ng active. Each process is returned as
{pid(),integer() >= 0},wherei nteger () isthe number of monitors held by process pi d() .

If optionl i nked_i n_dri ver or per manent returnstr ue, al other optionsreturn | i nked_i n_dri ver or
per manent , respectively.

The function throws abadar g exception if the driver is not present in the system or if the tag is not supported.

load(Path, Name) -> ok | {error, ErrorDesc}

Types:
Path = path()
Name = driver ()

ErrorDesc = term()

Loads and links the dynamic driver Nane. Pat h isafile path to the directory containing the driver. Narme must be a
sharable object/dynamic library. Two driverswith different Pat h parameters cannot be loaded under the same name.
Nare isastring or atom containing at least one character.

Ericsson AB. All Rights Reserved.: Kernel | 53

erl_ddll

The Nane specified is to correspond to the filename of the dynamically loadable object file residing in the directory
specified as Pat h, but without the extension (that is, . s0). The driver name provided in the driver initialization
routine must correspond with the filename, in much the same way as Erlang module names correspond to the names
of the. beamfiles.

If the driver was previously unloaded, but is still present because of open ports to it, a call to | oad/ 2 stops the
unloading and keepsthe driver (aslong as Pat h isthe same), and ok isreturned. If you really want the object code to
bereloaded, user el oad/ 2 or thelow-level interfacet ry | oad/ 3 instead. Seealsothedescriptionof di f f er ent
scenari os for loading/unloading in the introduction.

If more than one processtriesto load an already |oaded driver with the same Pat h, or if the same processtriesto load
it many times, the function returns ok . The emulator keepstrack of thel oad/ 2 calls, so that a corresponding number
of unl oad/ 2 calls must be done from the same process before the driver gets unloaded. It is therefore safe for an
application to load a driver that is shared between processes or applications when needed. It can safely be unloaded
without causing trouble for other parts of the system.

It is not allowed to load multiple drivers with the same name but with different Pat h parameters.

Note:

Pat h is interpreted literally, so that al loaders of the same driver must specify the same literal Pat h string,
although different paths can point out the same directory in the file system (because of use of relative paths and
links).

On success, the function returns ok . On failure, the return valueis{ error, Err or Desc}, where Er r or Desc is
an opague term to be translated into human readable form by function f or mat _error/ 1.

For more control over the error handling, usethet ry_| oad/ 3 interface instead.

The function throws abadar g exception if the parameters are not specified as described here.

load driver(Path, Name) -> ok | {error, ErrorDesc}

Types.
Path = path()
Name = driver ()

ErrorDesc = term()

Works essentially as| oad/ 2, but loads the driver with other options. All ports using the driver are killed with reason
dri ver _unl oaded when thedriver isto be unloaded.

The number of loads and unloads by different users influences the loading and unloading of a driver file. The port
killing therefore only occurs when the last user unloads the driver, or when the last process having loaded the driver
exits.

This interface (or at least the name of the functions) is kept for backward compatibility. Usingt ry_| oad/ 3 with
{driver_options,[kill_ports]} intheoptionlist givesthe same effect regarding the port killing.

The function throws abadar g exception if the parameters are not specified as described here.

loaded drivers() -> {ok, Drivers}
Types:

54 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

Drivers = [Driver]

Driver = string()
Returns alist of all the available drivers, both (statically) linked-in and dynamically loaded ones.
The driver names are returned as alist of strings rather than alist of atoms for historical reasons.

For more information about drivers, seei nf o.

monitor(Tag, Item) -> MonitorRef
Types:
Tag = driver
Item {Name, When}
Name = driver ()
When = loaded | unloaded | unloaded only
MonitorRef = reference()
Creates a driver monitor and works in many ways as er | ang: noni t or/ 2 in ERTS, does for processes. When

a driver changes state, the monitor results in a monitor message that is sent to the calling process. Moni t or Ref
returned by this function is included in the message sent.

Aswith process monitors, each driver monitor set only generates one single message. The monitor is"destroyed" after
the message is sent, so it is then not needed to call denoni tor/ 1.

Moni t or Ref can also be used in subsequent callsto denoni t or / 1 to remove amonitor.
The function accepts the following parameters:
Tag

The monitor tag is always dr i ver, as this function can only be used to create driver monitors. In the future,
driver monitors will be integrated with process monitors, why this parameter has to be specified for consistence.

Item

Parameter | t em specifies which driver to monitor (the driver name) and which state change to monitor. The
parameter isatuple of arity two whosefirst element isthe driver name and second element is one of thefollowing:

| oaded

Notifieswhenthedriver isreloaded (or loaded if |oading isunderway). It only makes senseto monitor drivers
that are in the process of being loaded or reloaded. A future driver name for loading cannot be monitored.
That only resultsin a DOAN message sent immediately. Monitoring for loading istherefore most useful when
triggered by functiont ry | oad/ 3, where the monitor is created because the driver isin such a pending
State.

Setting adriver monitor for | oadi ng eventually leads to one of the following messages being sent:
{*UP", reference(), driver, Nane, |oaded}

This message is sent either immediately if the driver is already loaded and no reloading is pending, or
when reloading is executed if reloading is pending.

The user is expected to know if reloading is demanded before creating a monitor for loading.
{*UP", reference(), driver, Nane, permanent}

This message is sent if reloading was expected, but the (old) driver made itself permanent before
reloading. It is also sent if the driver was permanent or statically linked-in when trying to create the
monitor.

Ericsson AB. All Rights Reserved.: Kernel | 55

erl_ddll

{' DO , reference(), driver, Nane, |oad_cancell ed}

Thismessage arrivesif reloading was underway, but the requesting user cancelled it by dying or calling
try_unl oad/ 2 (or unl oad/ 1/unl oad_dri ver/ 1) again before it was rel oaded.

{' DOWN , reference(), driver, Nane, {load failure, Failure}}

Thismessage arrivesif reloading was underway but the loading for some reason failed. TheFai | ur e
term is one of the errors that can be returned fromt ry_| oad/ 3. The error term can be passed to
format _error/ 1 fortrandation into human readable form. Notice that the trand ation must be done
in the same running Erlang virtual machine as the error was detected in.

unl oaded

Monitors when a driver gets unloaded. If one monitors a driver that is not present in the system, one
immediately gets notified that the driver got unloaded. Thereisno guarantee that the driver was ever oaded.

A driver monitor for unload eventually results in one of the following messages being sent:
{' DOWN , reference(), driver, Nane, unl oaded}

The monitored driver instanceis now unloaded. Asthe unload can be aresult of ar el oad/ 2 request,
the driver can once again have been |oaded when this message arrives.

{*UP", reference(), driver, Nane, unload_cancell ed}

This message is sent if unloading was expected, but while the driver was waiting for all ports to get
closed, anew user of the driver appeared, and the unloading was cancelled.

Thismessage appearsif { ok, pendi ng_dri ver} wasreturnedfromt ry_unl oad/ 2 for thelast
user of thedriver, andthen { ok, al ready_| oaded} isreturned fromacaltotry | oad/ 3.

If onereally wantsto monitor when the driver gets unloaded, this message distorts the picture, because
no unloading wasdone. Optionunl oaded_onl y createsamonitor similar toanunl oaded monitor,
but never results in this message.

{*UP", reference(), driver, Nane, pernanent}

Thismessageis sent if unloading was expected, but the driver madeitself permanent before unloading.
It isalso sent if trying to monitor a permanent or statically linked-in driver.

unl oaded_only

A monitor created as unl oaded_onl y behaves exactly as one created as unl oaded except that the
{"UP', reference(), driver, Name, unload_cancel | ed} messageisnever sent, but the
monitor instead persists until the driver really gets unloaded.

The function throws abadar g exception if the parameters are not specified as described here.

reload(Path, Name) -> ok | {error, ErrorDesc}

Types:
Path = path()
Name = driver ()

ErrorDesc = pending process | OpaqueError
OpaqueError = term()

Reloads the driver named Nane from a possibly different Pat h than previously used. This function is used in the
code change scenar i o described in the introduction.

If there are other users of thisdriver, thefunctionreturns{ error, pendi ng_pr ocess}, butif there are no other
users, the function call hangs until all open ports are closed.

56 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

Note:

Avoid mixing multiple users with driver reload requests.

To avoid hanging on open ports, use functiont ry_| oad/ 3 instead.
The Nare and Pat h parameters have exactly the same meaning as when calling the plain function| oad/ 2.

On success, thefunction returns ok. On failure, the function returns an opaque error, except thependi ng_pr ocess
error described earlier. The opague errors are to be translated into human readable form by function
format _error/1.

For more control over the error handling, usethet ry | oad/ 3 interface instead.

The function throws abadar g exception if the parameters are not specified as described here.

reload driver(Path, Name) -> ok | {error, ErrorDesc}
Types:
Path = path()
Name = driver ()
ErrorDesc = pending process | OpaqueError
OpaqueError = term()

Works exactly asr el oad/ 2, but for driversloaded with thel oad_dri ver/ 2 interface.

As this interface implies that ports are killed when the last user disappears, the function does not hang waiting for
portsto get closed.

For more details, see scenar i os in this module description and the function description for r el oad/ 2.
The function throws abadar g exception if the parameters are not specified as described here.

try load(Path, Name, OptionList) ->
{ok, Status} |
{ok, PendingStatus, Ref} |
{error, ErrorDesc}

Types:
Path = path()
Name = driver ()
OptionList = [Option]
Option =
{driver options, DriverOptionList} |
{monitor, MonitorOption} |

Ericsson AB. All Rights Reserved.: Kernel | 57

erl_ddll

{reload, ReloadOption}
DriverOptionList = [DriverOption]
DriverOption = kill ports
MonitorOption = ReloadOption = pending driver | pending
Status = loaded | already loaded | PendingStatus
PendingStatus = pending driver | pending process
Ref = reference()
ErrorDesc = ErrorAtom | OpaqueError
ErrorAtom =

linked in driver |

inconsistent |

permanent |

not loaded by this process |

not loaded |

pending reload |

pending process
OpaqueError = term()

Provides more control than the | oad/ 2/r el oad/ 2 and | oad_dri ver/ 2/rel oad_dri ver/ 2 interfaces. It
never waits for completion of other operations related to the driver, but immediately returns the status of the driver
as one of the following:

{ok, | oaded}
The driver was loaded and isimmediately usable.
{ok, already_| oaded}

Thedriver wasalready |oaded by another processor isin use by aliving port, or both. Theload by youisregistered
and acorrespondingt ry_unl oad is expected sometime in the future.

{ok, pending driver}or{ok, pending driver, reference()}

The load request is registered, but the loading is delayed because an earlier instance of the driver is still waiting
to get unloaded (open ports use it). Still, unload is expected when you are done with the driver. This return
value mostly occurs when options { r el oad, pendi ng_dri ver} or {rel oad, pendi ng} are used, but
can occur when another user is unloading a driver in parallel and driver option ki | | _port s is set. In other
words, this return value always needs to be handled.

{ok, pending_process}or{ok, pending_process, reference()}

The load request is registered, but the loading is delayed because an earlier instance of the driver is still waiting
to get unloaded by another user (not only by aport, in which case{ ok, pendi ng_dri ver} would have been
returned). Still, unload is expected when you are done with the driver. Thisreturn value only occurs when option
{rel oad, pendi ng} isused.

When the function returns { ok, pendi ng_dri ver} or{ok, pendi ng_process}, onecan get information
about when the driver isactually loaded by using option { noni t or, Monit or Opti on}.

When monitoring is requested, and a corresponding { ok, pendi ng _driver} or{ok, pendi ng_process}
would bereturned, the function instead returnsatuple{ ok, Pendi ngSt at us, reference()} andtheprocess
then gets a monitor message later, when the driver gets loaded. The monitor message to expect is described in the
function description of noni t or/ 2.

58 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

Note:

In case of loading, monitoring can not only get triggered by using option { r el oad, Rel oadOpti on}, but
also in specia cases where the load error is transient. Thus, { moni t or, pendi ng_dri ver} isto beused
under basically all real world circumstances.

The function accepts the following parameters:
Pat h

Thefile system path to the directory where the driver object fileislocated. The filename of the object file (minus
extension) must correspond to the driver name (used in parameter Nane) and the driver must identify itself with
the same name. Pat h can be provided asaniolist(), meaning it can bealist of otheri ol i st () s, characters (8-
bit integers), or binaries, all to be flattened into a sequence of characters.

The (possibly flattened) Pat h parameter must be consistent throughout the system. A driver isto, by all users,
be loaded using the same literal Pat h. The exception is when reloading is requested, in which case Pat h can
be specified differently. Notice that all users trying to load the driver later need to use the new Pat h if Pat h
is changed using ar el oad option. This is yet another reason to have only one loader of a driver one wants
to upgrade in arunning system.

Nane

This parameter is the name of the driver to be used in subsequent calls to function er | ang: open_port in
ERTS. The name can be specified asani ol i st () or anat on() . The name specified when loading is used
to find the object file (with the help of Pat h and the system-implied extension suffix, that is, . so). The name
by which the driver identifiesitself must also be consistent with this Nane parameter, much as the module name
of aBeam file much correspondsto its filename.

Opt i onLi st

Some options can be specified to control the loading operation. The options are specified as alist of two-tuples.
The tuples have the following values and meanings:

{driver_options, DriverOptionList}
Thisisto provide options that changes its general behavior and "sticks' to the driver throughout itslifespan.

The driver options for a specified driver name need always to be consistent, even when the driver is
reloaded, meaning that they are as much a part of the driver as the name.

The only allowed driver optioniski | I _port s, which meansthat all ports opened to the driver are killed
with exit reason dr i ver _unl oaded when no process any longer has the driver loaded. This situation
arises either when the last user callst ry_unl oad/ 2, or when the last process having loaded the driver
exits.

{noni tor, MonitorOption}
A MonitorOptiontellstry | oad/ 3 to trigger a driver monitor under certain conditions. When the

monitor is triggered, the function returns a three-tuple { ok, Pendi ngSt atus, reference()},
wherer ef er ence() isthe monitor reference for the driver monitor.

Only one Moni t or Opt i on can be specified. It is one of the following:

e Theatompendi ng, which meansthat amonitor isto be created whenever aload operation is delayed,

» Theatompendi ng_dri ver ,inwhichamonitor iscreated whenever the operation is delayed because
of open portsto an otherwise unused driver.

Ericsson AB. All Rights Reserved.: Kernel | 59

erl_ddll

Optionpendi ng_dri ver isof littleuse, but ispresent for completeness, asit iswell defined which reload
optionsthat can giveriseto which delays. However, it can beagood ideato usethe sameMoni t or Opt i on
astheRel oadOpt i on, if present.

If reloading is not requested, it can still be useful to specify option moni t or , as forced unloads (driver
optionki I I _ports oroptionkill _portstotry_unl oad/ 2) trigger atransient state where driver
loading cannot be performed until all closing ports are closed. Thus, ast ry_unl oad can, in almost all
situations, return{ ok, pendi ng_dri ver},alwaysspecifyatleast{ moni t or, pendi ng_dri ver}
in production code (see the monitor discussion earlier).

{rel oad, Rel oadOpti on}

Thisoption is used to reload a driver from disk, most often in a code upgrade scenario. Having ar el oad
option also implies that parameter Pat h does not need to be consistent with earlier loads of the driver.

To reload a driver, the process must have loaded the driver before, that is, there must be an active user of
the driver in the process.

Ther el oad option can be either of the following:
pendi ng

Withtheatom pendi ng, reloading isrequested for any driver and is effectuated when all ports opened
to the driver are closed. The driver replacement in this case takes place regardless if there are still
pending users having the driver loaded.

The option also triggers port-killing (if driver optionki | | _por t s isused) although there are pending
users, making it usablefor forced driver replacement, but laying much responsibility on thedriver users.
The pending option is seldom used as one does not want other users to have loaded the driver when
code change is underway.

pendi ng_dri ver

This option is more useful. Here, reloading is queued if the driver is not loaded by any other users,
but the driver has opened ports, in which case { ok, pendi ng_dri ver} isreturned (anoni t or
option is recommended).

If the driver isunloaded (not present in the system), error code not _| oaded isreturned. Optionr el oad
isintended for when the user has already |oaded the driver in advance.

The function can return numerous errors, some can only be returned given a certain combination of options.

Some errors are opague and can only be interpreted by passing them to function f or mat _er r or/ 1, but some can
be interpreted directly:

{error,linked_in_driver}

The driver with the specified name is an Erlang statically linked-in driver, which cannot be manipulated with
thisAPI.

{error,inconsistent}
The driver is already loaded with other Dr i ver Opt i onLi st or adifferent literal Pat h argument.
This can occur evenif ar el oad option is specified, if Dri ver Opt i onLi st differsfrom the current.
{error, pernanent}

The driver has requested itself to be permanent, making it behave like an Erlang linked-in driver and can no
longer be manipulated with this API.

{error, pending process}

The driver isloaded by other userswhen option { r el oad, pendi ng_dri ver} was specified.

60 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

{error, pending_rel oad}
Driver reload is already requested by another user when option { r el oad, Rel oadOpti on} was specified.
{error, not_| oaded_by_this_process}

Appears when option r el oad is specified. The driver Name is present in the system, but there is no user of
itinthis process.

{error, not_| oaded}

Appears when option r el oad is specified. The driver Nane is not in the system. Only drivers loaded by this
process can be rel oaded.

All other error codes are to be trandated by function f or nat _err or/ 1. Noticethat callstof or mat _error are
to be performed from the same running instance of the Erlang virtual machine as the error is detected in, because of
system-dependent behavior concerning error values.

If the arguments or options are malformed, the function throws abadar g exception.

try unload(Name, OptionList) ->
{ok, Status} |
{ok, PendingStatus, Ref} |
{error, ErrorAtom}
Types:
Name = driver ()
OptionList = [Option]
Option = {monitor, MonitorOption} | kill ports
MonitorOption = pending driver | pending
Status = unloaded | PendingStatus
PendingStatus = pending driver | pending process
Ref = reference()
ErrorAtom =
linked in driver |
not loaded |
not loaded by this process |
permanent

Thisisthelow-level function to unload (or decrement reference counts of) adriver. It can be used to force port killing,
in much the sameway asthedriver optionki | | _por t s implicitly does. Also, it can trigger amonitor either because
other users still have the driver loaded or because open ports use the driver.

Unloading can be described as the process of telling the emulator that this particular part of the code in this particular
process (that is, this user) no longer needs the driver. That can, if there are no other users, trigger unloading of the
driver, in which case the driver name disappears from the system and (if possible) the memory occupied by the driver
executable code is reclaimed.

If the driver hasoption ki | | _ports set,orif kil | _ports isspecified as an option to this function, all pending
ports using this driver are killed when unloading is done by the last user. If no port-killing is involved and there are
open ports, the unloading is delayed until no more open ports use the driver. If, in this case, another user (or even this
user) loads the driver again before the driver is unloaded, the unloading never takes place.

To alow the user to request unloading to wait for actual unloading, noni t or triggers can be specified in much
the same way as when loading. However, as users of this function seldom are interested in more than decrementing
the reference counts, monitoring is seldom needed.

Ericsson AB. All Rights Reserved.: Kernel | 61

erl_ddll

Note:

If optionki | | _port s isused, monitor trigging is crucial, as the ports are not guaranteed to be killed until the
driver is unloaded. Thus, a monitor must be triggered for at least the pendi ng_dri ver case.

The possible monitor messages to expect are the same as when using option unl oaded to function nmoni t or/ 2.
The function returns one of the following statuses upon success:
{ok, unl oaded}

The driver was immediately unloaded, meaning that the driver name is now free to use by other drivers and, if
the underlying OS permits it, the memory occupied by the driver object code is now reclaimed.

The driver can only be unloaded when there are no open ports using it and no more usersrequire it to be loaded.
{ok, pending_driver}or{ok, pending_driver, reference()}

Indicates that this call removed the last user from the driver, but there are still open portsusing it. When all ports
are closed and no new users have arrived, the driver is reloaded and the name and memory reclaimed.

Thisreturn valueisvalid even if option ki | | _port s was used, askilling ports can be a process that does not
completeimmediately. However, the condition isin that case transient. Monitors are always useful to detect when
the driver isreally unloaded.

{ok, pending_process}or{ok, pending_process, reference()}

The unload request is registered, but other users still hold the driver. Notice that theterm pendi ng_pr ocess
can refer to the running process; there can be more than one user in the same process.

Thisisanormal, healthy, return valueif thecall wasjust placed to inform the emul ator that you have no further use
of thedriver. It isthe most common return value in the most common scenar i o described in the introduction.

The function accepts the following parameters:
Nane

Nane isthe name of the driver to be unloaded. The name can be specified asani ol i st () orasanat on().
Opt i onLi st

Argument Opt i onLi st can be used to specify certain behavior regarding ports and triggering monitors under
certain conditions:

kill _ports

Forces killing of all ports opened using this driver, with exit reason dri ver _unl oaded, if you are the
last user of the driver.

If other users have the driver loaded, this option has no effect.

To get the consistent behavior of killing ports when the last user unloads, use driver optionki | | _ports
when loading the driver instead.

{moni tor, MbnitorOption}
Creates adriver monitor if the condition specified in Moni t or Opt i on istrue. Thevalid options are;
pendi ng_dri ver
Creates adriver monitor if thereturn valueisto be{ ok, pendi ng_dri ver}.
pendi ng

Createsamonitor if thereturnvalueis{ ok, pendi ng_dri ver} or{ ok, pendi ng_process}.

62 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

The pendi ng_dri ver Monitor Opti on is by far the most useful. It must be used to ensure that the
driver really is unloaded and the ports closed whenever option ki | | _por t s isused, or the driver can have
been loaded with driver option ki | | _ports.

Using themonitor triggersinthecall tot r y_unl oad ensuresthat the monitor isadded before the unloading
is executed, meaning that the monitor is always properly triggered, which is not the case if noni t or/ 2
iscalled separately.

The function can return the following error conditions, all well specified (no opague values):
{error, linked in_driver}

Y ou were trying to unload an Erlang statically linked-in driver, which cannot be manipulated with this interface
(and cannot be unloaded at all).

{error, not_| oaded}
The driver Nane is not present in the system.
{error, not_I| oaded_by_this_process}
The driver Nane is present in the system, but there is no user of it in this process.

Asaspecial case, drivers can be unloaded from processes that have done no corresponding call totry | oad/ 3
if, and only if, there are no user s of thedriver at all, which can occur if the process containing the last user dies.

{error, pernanent}
The driver has made itself permanent, in which case it can no longer be manipulated by thisinterface (much like
adtaticaly linked-in driver).

The function throws abadar g exception if the parameters are not specified as described here.

unload(Name) -> ok | {error, ErrorDesc}
Types:
Name = driver ()
ErrorDesc = term()
Unloads, or at |east dereferences the driver named Nanre. If the caller isthe last user of the driver, and no more open

ports use the driver, the driver gets unloaded. Otherwise, unloading is delayed until all ports are closed and no users
remain.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user of the driver. For use scenarios, seethedescr i pti on inthe beginning of this module.

The Er r or Desc returned is an opaque value to be passed further on to function f or mat _error/ 1. For more
control over the operation, usethet ry _unl oad/ 2 interface.

The function throws abadar g exception if the parameters are not specified as described here.

unload driver(Name) -> ok | {error, ErrorDesc}
Types:

Name = driver ()

ErrorDesc = term()

Unloads, or at least dereferences the driver named Nane. If the caller isthe last user of the driver, all remaining open
ports using the driver are killed with reason dr i ver _unl oaded and the driver eventually gets unloaded.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user. For use scenarios, seethedescri pt i on inthe beginning of this module.

Ericsson AB. All Rights Reserved.: Kernel | 63

erl_ddll

The Er r or Desc returned is an opaque value to be passed further on to function f or mat _error/ 1. For more
control over the operation, usethet ry_unl oad/ 2 interface.

The function throws abadar g exception if the parameters are not specified as described here.

See Also

erts:erl _driver(4),erts:driver_entry(4)

64 | Ericsson AB. All Rights Reserved.: Kernel

erl_prim_loader

erl_prim_loader

Erlang module

The module erl_prim_loader is moved to the runtime system application. Please see erl_prim_loader(3) in the ERTS
reference manual instead.

Ericsson AB. All Rights Reserved.: Kernel | 65

erlang

erlang

Erlang module

The module erlang is moved to the runtime system application. Please see erlang(3) in the ERTS reference manual
instead.

66 | Ericsson AB. All Rights Reserved.: Kernel

error_handler

error_handler

Erlang module

This module defines what happens when certain types of errors occur.

Exports

raise undef exception(Module, Function, Args) -> no_return()
Types:

Module = Function = atom()

Args = list()

A (possibly empty) list of arguments Ar g1, . ., ArgN

Raisesan undef exception with a stacktrace, indicating that Modul e: Funct i on/ Nisundefined.

undefined function(Module, Function, Args) -> any()
Types:

Module = Function = atom()

Args = list()

A (possibly empty) list of arguments Ar g1, . ., ArgN
This function is called by the runtime system if a call is made to Modul e: Functi on(Argl,.., ArgN) and
Modul e: Funct i on/ Nisundefined. Noticethat thisfunctionisevaluated insidethe processmaking theorigina call.
This function first attempts to autoload Modul e. If that is not possible, an undef exceptionis raised.
If it is possible to load Modul e and function Funct i on/ Nisexported, it is called.

Otherwise, if function ' $handl e _undefined function'/2 is exported, it is «caled as
" $handl e_undefi ned_functi on' (Function, Args).

Warning:

Defining ' $handl e_undefi ned_functi on' /2 in ordinary application code is highly discouraged. It is
very easy to make subtle errorsthat can take along time to debug. Furthermore, none of the tools for static code
analysis (such as Dialyzer and Xref) supportstheuseof ' $handl e_undefi ned_functi on' / 2 andnosuch
support will be added. Only use this function after having carefully considered other, less dangerous, solutions.
One example of potential legitimate use is creating stubs for other sub-systems during testing and debugging.

Otherwise an undef exception israised.

undefined lambda(Module, Fun, Args) -> term()
Types:

Module = atom()

Fun = function()

Args = list()

A (possibly empty) list of arguments Ar g1, . ., ArgN

Ericsson AB. All Rights Reserved.: Kernel | 67

error_handler

This function is evaluated if a call ismadeto Fun(Argl, .., ArgN) when the module defining the fun is not
loaded. The function is evaluated inside the process making the original call.

If Modul e isinterpreted, the interpreter isinvoked and the return value of the interpreted Fun(Arg1, .., ArgN)
call isreturned.

Otherwise, it returns, if possible, the value of appl y(Fun, Args) after an attempt is made to autoload Mbdul e.
If thisis not possible, the call fails with exit reason undef .

Notes

Thecodeinerror _handl er iscomplex. Do not changeit without fully understanding the interaction between the
error handler, thei ni t process of the code server, and the 1/0O mechanism of the code.

Code changes that seem small can cause a deadlock, as unforeseen consequences can occur. The use of i nput is
dangerousin this type of code.

68 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

error_logger

Erlang module

The Erlang error logger is an event manager (see OTP Design Principles and gen_event (3)), registered as
error_| ogger . Errors, warnings, and info events are sent to the error logger from the Erlang runtime system and
the different Erlang/OTP applications. The events are, by default, logged to the terminal. Notice that an event from a
process P islogged at the node of the group leader of P. This meansthat log output is directed to the node from which
aprocess was created, which not necessarily is the same node as where it is executing.

Initially, er r or _| ogger hasonly aprimitive event handler, which buffersand printstheraw event messages. During
system startup, the Kernel application replaces this with a standard event handler, by default one that writes nicely
formatted output to the terminal. Kernel can also be configured so that events arelogged to afileinstead, or not logged
a al, seeker nel (6).

Also the SASL application, if started, adds its own event handler, which by default writes supervisor, crash, and
progress reportsto the terminal. See sasl (6) .

It is recommended that user-defined applications report errors through the error logger to get uniform reports. User-
defined event handlers can be added to handle application-specific events, seeadd_report _handl er/ 1, 2. Also,
auseful event handler is provided in STDLIB for multi-file logging of events, seel og_nf _h(3).

Warning events were introduced in Erlang/OTP R9C and are enabled by default as from Erlang/OTP 18.0. To retain
backwards compatibility with existing user-defined event handlers, the warning events can be tagged aser r or s or
i nf o using command-line flag+W <e | i | w>, thusshowing up as ERROR REPORT or | NFO REPORT
inthelogs.

Data Types

report() =
[{Tag :: term(), Data :: term()} | term()] | string() | term()

Exports

add report handler(Handler) -> any()
add_report handler(Handler, Args) -> Result
Types:
Handler = module()
Args = gen_event: handl er _args()
Result = gen_event:add_handl er_ret()
Adds a new event handler to the error logger. The event handler must be implemented as agen_event callback
module, seegen_event (3).
Handl er istypically the name of the callback module and Ar gs is an optional term (defaults to []) passed to the
initialization callback function Handl er : i ni t / 1. The function returns ok if successful.

The event handler must be able to handle the events in this modul e, see section Events.

delete report handler(Handler) -> Result
Types:

Ericsson AB. All Rights Reserved.: Kernel | 69

error_logger

Handler = module()
Result = gen_event:del handler_ret()

Deletes an event handler from the error logger by caling gen_event : del et e_handl er (error _| ogger,
Handl er, []),seegen_event (3).

error_msg(Format) -> ok
error_msg(Format, Data) -> ok
format(Format, Data) -> ok
Types:
Format = string()
Data = list()
Sends a standard error event to the error logger. The For mat and Dat a arguments are the same as the arguments of
i 0:format/ 2in STDLIB. The event is handled by the standard event handler.

Example:

1> error_logger:error _msg("An error occurred in ~p~n", [a module]).

=ERROR REPORT==== 11-Aug-2005::14:03:19 ===
An error occurred in a module
ok

Warning:

If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, useer r or _r eport/ 1 instead.

error_report(Report) -> ok
Types:
Report = report()
Sends a standard error report event to the error logger. The event is handled by the standard event handler.

Example:

2> error_logger:error report([{tagl,datal},a term,{tag2,data}]).

=ERROR REPORT==== 11-Aug-2005::13:45:41 ===
tagl: datal
a_term
tag2: data
ok
3> error_logger:error_report("Serious error in my module").
=ERROR REPORT==== 11-Aug-2005::13:45:49 ===
Serious error in my module
ok

70 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

error_report(Type, Report) -> ok
Types:
Type = term()
Report = report()
Sends a user-defined error report event to the error logger. An event handler to handle the event is supposed to have
been added. The event isignored by the standard event handler.

It is recommended that Repor t follows the same structure asfor error _report/ 1.

info msg(Format) -> ok
info msg(Format, Data) -> ok
Types:
Format = string()
Data = list()
Sends a standard information event to the error logger. The For mat and Dat a arguments are the same as the
argumentsof i o: f or mat / 2 in STDLIB. The event is handled by the standard event handler.

Example:

1> error_logger:info msg("Something happened in ~p~n", [a modulel]).

=INFO REPORT==== 11-Aug-2005::14:06:15 ===
Something happened in a module
ok

Warning:

If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, usei nf o_r eport/ 1 instead.

info _report(Report) -> ok
Types:
Report = report ()
Sends a standard information report event to the error logger. The event is handled by the standard event handler.

Example:

2> error_logger:info report([{tagl,datal},a term,{tag2,data}]).

=INFO REPORT==== 11-Aug-2005::13:55:09 ===
tagl: datal
a_term
tag2: data
ok
3> error_logger:info_report("Something strange happened").

=INFO REPORT==== 11-Aug-2005::13:55:36 ===
Something strange happened

Ericsson AB. All Rights Reserved.: Kernel | 71

error_logger

ok

info report(Type, Report) -> ok
Types:
Type = any()
Report = report()
Sends a user-defined information report event to the error logger. An event handler to handle the event is supposed to
have been added. The event isignored by the standard event handler.

It isrecommended that Repor t follows the same structure asfor i nf o_r eport/ 1.

logfile(Request :: {open, Filename}) -> ok | {error, OpenReason}
logfile(Request :: close) -> ok | {error, CloseReason}
logfile(Request :: filename) -> Filename | {error, FilenameReason}
Types.

Filename = file: nane()

OpenReason = allready have logfile | open_error()

CloseReason = module not found

FilenameReason = no log file

open error() = file:posix() | badarg | system limit
Enables or disables printout of standard eventsto afile.

This is done by adding or deleting the standard event handler for output to file. Thus, calling this function overrides
the value of the Kernel er r or _| ogger configuration parameter.

Enabling file logging can be used together with callingt t y(f al se), to have a silent system where al standard
events are logged to afile only. Only onelog file can be active at atime.

Request isone of the following:
{open, Fil enane}

OpenslogfileFi | enane. Returnsok if successful,or{error, allready have | ogfil e} ifloggingto
fileisaready enabled, or an error tuple if another error occurred (for example, if Fi | enamre cannot be opened).

cl ose
Closesthe current log file. Returns ok, or { err or, nodul e_not _f ound}.
fil enanme

Returnsthe name of thelog fileFi | ename, or{error, no_l og fil e} if loggingtofileisnot enabled.

tty(Flag) -> ok
Types:
Flag = boolean()
Enables (FI ag == true) ordisables(FI ag == f al se) printout of standard events to the terminal.

This is done by adding or deleting the standard event handler for output to the terminal. Thus, calling this function
overrides the value of the Kernel er r or _| ogger configuration parameter.

warning map() -> Tag
Types:

72 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

Tag = error | warning | info

Returns the current mapping for warning events. Events sent using warning _nsg/1,2 or
war ni ng_report/ 1, 2 aretagged as errors, warnings (default), or info, depending on the value of command-line
flag +W

Example:

0s$ erl
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ~G)
1> error logger:warning map().
warning
2> error_logger:warning msg("Warnings tagged as: ~p~n", [warning]).
=WARNING REPORT==== 11-Aug-2005::15:31:55 ===
Warnings tagged as: warning
ok
3>
User switch command
-->q
os$ erl +W e
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ~G)

1> error logger:warning map().

error

2> error _logger:warning msg(“"Warnings tagged as: ~p~n", [error]).

=ERROR REPORT==== 11-Aug-2005::15:31:23 ===
Warnings tagged as: error
ok

warning msg(Format) -> ok
warning msg(Format, Data) -> ok
Types:
Format = string()
Data = list()
Sends a standard warning event to the error logger. The For mat and Dat a arguments are the same as the arguments

of i o: format/ 2 in STDLIB. The event is handled by the standard event handler. It istagged as an error, warning,
or info, seewar ni ng_map/ 0.

Warning:

If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, usewar ni ng_r epor t/ 1 instead.

warning report(Report) -> ok
Types:

Ericsson AB. All Rights Reserved.: Kernel | 73

error_logger

Report = report ()

Sends a standard warning report event to the error logger. The event is handled by the standard event handler. It is
tagged as an error, warning, or info, seewar ni ng_map/ 0.

warning report(Type, Report) -> ok
Types:

Type = any()

Report = report ()

Sends a user-defined warning report event to the error logger. An event handler to handle the event is supposed to have
been added. The event is ignored by the standard event handler. It is tagged as an error, warning, or info, depending
on the value of war ni ng_map/ 0.

Events

All event handlers added to the error logger must handle the following events. G eader isthe group leader pid of
the process that sent the event, and Pi d isthe process that sent the event.

{error, deader, {Pid, Format, Data}}

Generated whenerror _nsg/ 1, 2 or f or mat iscalled.
{error _report, deader, {Pid, std error, Report}}

Generated whenerror _report/ 1iscaled.
{error _report, deader, {Pid, Type, Report}}

Generated whenerror _report/ 2 iscalled.
{warni ng_nmsg, d eader, {Pid, Format, Data}}

Generated when war ni ng_nsg/ 1, 2 iscalled if warnings are set to be tagged as warnings.
{warning_report, deader, {Pid, std warning, Report}}

Generated when war ni ng_r eport/ 1 iscaled if warnings are set to be tagged as warnings.
{warning_report, deader, {Pid, Type, Report}}

Generated whenwar ni ng_r eport/ 2 iscalled if warnings are set to be tagged as warnings.
{info_nsg, d eader, {Pid, Format, Data}}

Generated wheni nf o_mnsg/ 1, 2 iscalled.
{info report, deader, {Pid, std_info, Report}}

Generated wheni nf o_r eport/ 1iscalled.
{info_report, deader, {Pid, Type, Report}}

Generated wheni nf o_report/ 2 iscalled.

Notice that some system-internal events can also be received. Therefore a catch-al clause last in the definition
of the event handler callback function Modul e: handl e_event/ 2 is necessary. This aso applies for
Modul e: handl e_i nf o/ 2, as the event handler must also take care of some system-internal messages.

See Also
gen_event (3),1 og _nf_h(3) kernel (6) sasl (6)

74 | Ericsson AB. All Rights Reserved.: Kernel

file

file

Erlang module

This module provides an interface to the file system.

On operating systems with thread support, file operations can be performed in threads of their own, allowing other
Erlang processes to continue executing in parallel with the file operations. See command-lineflag +Ainer| (1).

Regarding filename encoding, the Erlang VM can operate in two modes. The current mode can be queried using
functionnat i ve_name_encodi ng/ 0. Itreturns| ati nl orut f 8.

Inl at i n1 mode, the Erlang VM does not change the encoding of filenames. In ut f 8 mode, filenames can contain
Unicode characters greater than 255 and the VM converts filenames back and forth to the native filename encoding
(usually UTF-8, but UTF-16 on Windows).

The default mode depends on the operating system. Windows and MacOS X enforce consistent filename encoding
and therefore the VM uses ut f 8 mode.

On operating systems with transparent naming (for example, all Unix systems except MacOS X), default isut f 8 if
thetermina supports UTF-8, otherwisel at i n1. Thedefault can be overridden using +f nl (toforcel at i n1 mode)
or +f nu (toforce ut f 8 mode) when startingerts: erl .

On operating systems with transparent naming, files can be inconsistently named, for example, somefiles are encoded
in UTF-8 while others are encoded in I SO Latin-1. The concept of raw filenamesisintroduced to handlefile systems
with inconsistent naming when running in ut f 8 mode.

A raw filenameisafilename specified asabinary. The Erlang VM does not trand ate a filename specified as abinary
on systems with transparent naming.

When running in ut f 8 mode, functions! i st _dir/ 1 andread_| i nk/ 1 never return raw filenames. To return
all filenamesincluding raw filenames, use functionsl i st _dir_all/landread_|ink_all/1.

See also section Notes About Raw Filenames in the STDLIB User's Guide.

Data Types
deep list() = [char() | atom() | deep_list()]
fd()

A file descriptor representing afile opened inr aw mode.

filename() = string()

filename all() = string() | binary()

io device() = pid() | fd()

Asreturned by open/ 2; pi d() isaprocess handling I/O-protocols.

name() = string() | atom() | deep_list()

If VM isin Unicode filename mode, st ri ng() and char () arealowed to be > 255.

name all() =
string() | atom() | deep_list() | (RawFilename :: binary())

If VM isin Unicodefilenamemode, st ri ng() andchar () areallowedto be>255. RawFi | enane isafilename
not subject to Unicode translation, meaning that it can contain characters not conforming to the Unicode encoding
expected from the file system (that is, non-UTF-8 characters although the VM is started in Unicode filename mode).
posix() =

eacces |

Ericsson AB. All Rights Reserved.: Kernel | 75

file

eagain |

ebadf |

ebusy |

edquot |
eexist |
efault |

efbig |

eintr |

einval |

eio |

eisdir |

eloop |

emfile |
emlink |
enametoolong |
enfile |
enodev |
enoent |
enomem |
enospc |
enotblk |
enotdir |
enotsup |
enxio |
eperm |
epipe |
erofs |
espipe |
esrch |
estale |
exdev

An atom that is named from the POSIX error codes used in Unix, and in the runtime libraries of most C compilers.
date time() = cal endar:datetime()
Must denote avalid date and time.

file info() =
#file info{size = integer() >= 0 | undefined,
type =
device |
directory |
other |
regular |
symlink |
undefined,
access =
read | write | read write | none | undefined,
atime =
file:date_tinme() |
integer() >= 0 |
undefined,
mtime =

76 | Ericsson AB. All Rights Reserved.: Kernel

file

file:date_time() |
integer() >= 0 |
undefined,

ctime =
file:date_time() |
integer() >= 0 |
undefined,

mode = integer() >= 0 | undefined,
undefined,

links = integer() >= 0

I
major device = integer() >= 0 | undefined,
minor_device = integer() >= 0 | undefined,

inode = integer() >= 0 | undefined,
uid = integer() >= 0 | undefined,
gid = integer() >= 0 | undefined}

location() =
integer() |
{bof, Offset :: integer()} |
{cur, Offset :: integer()} |
{eof, Offset :: integer()} |
bof |
cur |
eof

mode() =

read |

write |

append |

exclusive |

raw |

binary |

{delayed write,

Size :: integer() >= 0,
Delay :: integer() >= 0} |
delayed write |

{read_ahead, Size :: integer() >= 1} |
read_ahead |

compressed |

{encoding, unicode: encoding()} |

sync

file info option() =

{time, local} | {time, universal} | {time, posix} |

Exports

advise(IoDevice, Offset, Length, Advise) -> ok | {error, Reason}

Types:
IoDevice = io_device()
Offset = Length = integer()
Advise = posix_file_advise()
Reason = posi x() | badarg

posix file advise() =

raw

Ericsson AB. All Rights Reserved.: Kernel | 77

file

normal |
sequential |
random |
no_reuse |
will need |
dont need

advi se/ 4 can be used to announce an intention to access file data in a specific pattern in the future, thus allowing
the operating system to perform appropriate optimizations.

On some platforms, this function might have no effect.

allocate(File, Offset, Length) -> ok | {error, posix()}
Types.

File = i o_device()

Offset = Length = integer() >= 0

al | ocat e/ 3 can be used to preallocate space for afile.

This function only succeeds in platforms that provide this feature. When it succeeds, space is preallocated for the file
but the file size might not be updated. This behaviour depends on the preallocation implementation. To guarantee that
the file size is updated, truncate the file to the new size.

change group(Filename, Gid) -> ok | {error, Reason}
Types.

Filename = nane_all ()

Gid = integer()

Reason = posix() | badarg
Changes group of afile. Seewrite file_info/2.

change _mode(Filename, Mode) -> ok | {error, Reason}
Types.

Filename = nane_all ()

Mode = integer()

Reason = posix() | badarg
Changes permissions of afile. Seewrite file_info/2.

change owner(Filename, Uid) -> ok | {error, Reason}
Types.

Filename = nane_all ()

Uid = integer()

Reason = posix() | badarg
Changes owner of afile. Seewite file_ infol?2.

change owner(Filename, Uid, Gid) -> ok | {error, Reason}
Types.

78 | Ericsson AB. All Rights Reserved.: Kernel

file

Filename = nane_all ()
Uid = Gid = integer()
Reason = posix() | badarg

Changes owner and group of afile. Seewrite file_ info/2.

change time(Filename, Mtime) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Mtime = date_time()

Reason = posix() | badarg
Changes the modification and accesstimes of afile. Seewrite_fil e_i nfo/ 2.

change time(Filename, Atime, Mtime) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Atime = Mtime = date_tine()

Reason = posix() | badarg

Changes the modification and last accesstimes of afile. Seewrite fil e_info/ 2.

close(IoDevice) -> ok | {error, Reason}
Types:
IoDevice = io_device()
Reason = posix() | badarg | terminated
Closesthefilereferenced by | oDevi ce. It mostly returns ok, except for some severe errors such as out of memory.

Notice that if option del ayed_wr i t e was used when opening the file, cl ose/ 1 can return an old write error and
not even try to close thefile. Seeopen/ 2.

consult(Filename) -> {ok, Terms} | {error, Reason}
Types:

Filename = nane_all ()

Terms = [term()]

Reason =

posi x() |

badarg |

terminated |

system limit |

{Line :: integer(), Mod :: module(), Term :: term()}

Reads Erlang terms, separated by "', from Fi | enane. Returns one of the following:
{ok, Terns}

The file was successfully read.
{error, atom)}

An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.

Ericsson AB. All Rights Reserved.: Kernel | 79

file

{error, {Line, Md, Ternt}}

An error occurred when interpreting the Erlang termsin the file. To convert the three-element tuple to an English
description of the error, usef or mat _error/ 1.

Example:

f.txt: {person, "kalle", 25}.
{person, "pelle", 30}.

1> file:consult("f.txt").
{ok, [{person, "kalle", 25}, {person, "pelle",30}]}

The encoding of Fi | enane can be set by acomment, as described in epp(3) .

copy(Source, Destination) -> {ok, BytesCopied} | {error, Reason}

copy(Source, Destination, ByteCount) ->
{ok, BytesCopied} | {error, Reason}

Types.

Source = Destination = io_device() | Filename | {Filename, Modes}
Filename = nane_all ()

Modes = [npde()]

ByteCount = integer() >= 0 | infinity
BytesCopied = integer() >= 0

Reason = posix() | badarg | terminated

CopiesByt eCount bytesfrom Sour ce toDest i nati on. Sour ce and Dest i nat i on refer to either filenames
or |0 devicesfrom, for example, open/ 2. Byt eCount defaultstoi nf i ni t y, denoting an infinite number of bytes.

Argument Modes isalist of possible modes, see open/ 2, and defaultsto[] .

If both Sour ce and Dest i nat i on refer tofilenames, thefilesare opened with[r ead, binary] and[wite,
bi nary] prepended to their mode lists, respectively, to optimize the copy.

If Sour ce refersto afilename, it is opened with r ead mode prepended to the mode list before the copy, and closed
when done.

If Desti nati on refersto afilename, it is opened with wr i t e mode prepended to the mode list before the copy,
and closed when done.

Returns{ ok, Byt esCopi ed}, where Byt esCopi ed isthe number of bytes that was copied, which can be less
than Byt eCount if end of filewas encountered onthesource. If the operationfails,{ er r or, Reason} isreturned.

Typical error reasons. asfor open/ 2 if afile had to be opened, and asforr ead/ 2 andwr i t e/ 2.

datasync(IoDevice) -> ok | {error, Reason}
Types:
IoDevice = io_device()
Reason = posix() | badarg | terminated
Ensuresthat any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. In many

ways it resemblesf sync but it does not update some of the metadata of the file, such as the access time. On some
platforms this function has no effect.

80 | Ericsson AB. All Rights Reserved.: Kernel

file

Applications that access databases or log files often write atiny data fragment (for example, onelinein alogfile) and
then call f sync() immediately to ensure that the written data is physically stored on the hard disk. Unfortunately,
fsync() aways initiates two write operations: one for the newly written data and another one to update the
modificationtimestoredinthei node. If themodificationtimeisnot apart of thetransaction concept, f dat async()
can be used to avoid unnecessary i node disk write operations.

Availableonly insome POSIX systems, thiscall resultsinacall tof sync() , or hasno effect in systemsnot providing
thef dat async() syscal.

del dir(Dir) -> ok | {error, Reason}
Types:
Dir = nane_al |l ()
Reason = posix() | badarg
Triesto delete directory Di r . The directory must be empty before it can be deleted. Returns ok if successful.
Typical error reasons:
eacces
Missing search or write permissions for the parent directories of Di r .
eexi st
Thedirectory is not empty.
enoent
The directory does not exist.
enotdir
A component of Di r isnot adirectory. On some platforms, enoent isreturned instead.
ei nval

Attempt to delete the current directory. On some platforms, eacces isreturned instead.

delete(Filename) -> ok | {error, Reason}
Types.

Filename = nane_all ()

Reason = posi x() | badarg

Triesto deletefile Fi | enane. Returns ok if successful.
Typical error reasons:
enoent

The file does not exist.
eacces

Missing permission for the file or one of its parents.
eperm

Thefileisadirectory and the user is not superuser.
enotdir

A component of the filename is not a directory. On some platforms, enoent isreturned instead.

Ericsson AB. All Rights Reserved.: Kernel | 81

file

ei nval

Fi | ename has an improper type, such astuple.

Warning:

In afuture release, a bad type for argument Fi | enamne will probably generate an exception.

eval(Filename) -> ok | {error, Reason}
Types:
Filename = nane_all ()
Reason =
posi x() |
badarg |
terminated |
system limit |
{Line :: integer(), Mod :: module(), Term :: term()}
Reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of expressionsis also an expression) from
Fi | ename. Theresult of the evaluation is not returned; any expression sequence in the file must be there for its side
effect. Returns one of the following:

ok

The file was read and evaluated.
{error, atom)}

An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.
{error, {Line, Md, Ternt}}

An error occurred when interpreting the Erlang expressions in the file. To convert the three-element tuple to an
English description of the error, usef or mat _error/ 1.

The encoding of Fi | enane can be set by acomment, as described in epp(3) .

eval(Filename, Bindings) -> ok | {error, Reason}

Types:
Filename
Bindings
Reason =

posi x() |

badarg |

terminated |

system limit |

{Line :: integer(), Mod :: module(), Term :: term()}

nane_al | ()
erl _eval : bi ndi ng_struct ()

The same as eval / 1, but the variable bindings Bi ndi ngs are used in the evaluation. For information about the
variable bindings, seeer| _eval (3).

format _error(Reason) -> Chars
Types:

82 | Ericsson AB. All Rights Reserved.: Kernel

file

Reason =

posi x() |

badarg |

terminated |

system limit |

{Line :: integer(), Mod :: module(), Term :: term()}
Chars = string()

Given the error reason returned by any function in this module, returns a descriptive string of the error in English.

get cwd() -> {ok, Dir} | {error, Reason}
Types:

Dir = fil ename()

Reason = posi x()

Returns{ ok, Dir},whereDi r isthe current working directory of the file server.

Note:

In rare circumstances, this function can fail on Unix. It can occur if read permission does not exist for the parent
directories of the current directory.

A typical error reason:
eacces

Missing read permission for one of the parents of the current directory.

get cwd(Drive) -> {ok, Dir} | {error, Reason}
Types:
Drive = string()
Dir = fil ename()
Reason = posix() | badarg
Returns{ok, Dir} or{error, Reason},whereDi r isthecurrent working directory of the specified drive.
Dri ve istobeof theform"Let t er: ", for example, "c:".
Returns{error, enotsup} on platforms that have no concept of current drive (Unix, for example).
Typica error reasons.
enot sup
The operating system has no concept of drives.
eacces
The drive does not exist.
ei nval
Theformat of Dri ve isinvalid.

list dir(Dir) -> {ok, Filenames} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 83

file

Dir = name_al |l ()
Filenames = [fil enane()]
Reason =

posi x() |
badarg |
{no_translation, Filename :: unicode:latinl_binary()}

Listsal filesin adirectory, except files with raw filenames. Returns { ok, Fi | enanes} if successful, otherwise
{error, Reason}.Fil enanes isalist of the names of all the filesin the directory. The names are not sorted.

Typical error reasons:
eacces
Missing search or write permissions for Di r or one of its parent directories.
enoent
The directory does not exist.
{no_transl ation, Filenane}
Fi | enanmeisabi nar y() withcharacterscodedin|SO Latin-1 and the VM was started with parameter +f nue.

list dir all(Dir) -> {ok, Filenames} | {error, Reason}
Types.

Dir = nane_all ()

Filenames = [filenane_all ()]

Reason = posix() | badarg

Lists al the files in a directory, including files with raw filenames. Returns { ok, Fi | enanes} if successful,
otherwise {error, Reason}.Fil enanes isalist of the names of all the files in the directory. The names are
not sorted.

Typical error reasons:
eacces

Missing search or write permissions for Di r or one of its parent directories.
enoent

The directory does not exist.

make dir(Dir) -> ok | {error, Reason}
Types:
Dir = name_al |l ()
Reason = posix() | badarg
Triesto create directory Di r . Missing parent directories are not created. Returns ok if successful.
Typical error reasons:
eacces
Missing search or write permissions for the parent directoriesof Di r .
eexi st
A fileor directory named Di r exists already.

84 | Ericsson AB. All Rights Reserved.: Kernel

file

enoent
A component of Di r does not exist.
enospc
No space is left on the device.
enotdir
A component of Di r isnot adirectory. On some platforms, enoent isreturned instead.

make link(Existing, New) -> ok | {error, Reason}
Types:

Existing = New = nane_all ()

Reason = posix() | badarg

Makes a hard link from Exi sti ng to New on platforms supporting links (Unix and Windows). This function
returns ok if the link was successfully created, otherwise { error, Reason}. On platforms not supporting links,
{error, enot sup} isreturned.

Typical error reasons:
eacces
Missing read or write permissions for the parent directories of Exi st i ng or New.
eexi st
New already exists.
enot sup
Hard links are not supported on this platform.

make symlink(Existing, New) -> ok | {error, Reason}
Types:

Existing = New = nane_all ()

Reason = posix() | badarg

Creates a symbolic link New to the file or directory Exi st i ng on platforms supporting symbolic links (most Unix
systems and Windows, beginning with Vista). Exi st i ng doesnot need to exist. Returnsok if thelink is successfully
created, otherwise { error, Reason}. On platforms not supporting symbolic links, { error, enot sup} is
returned.

Typical error reasons:
eacces
Missing read or write permissions for the parent directories of Exi st i ng or New.
eexi st
New already exists.
enot sup
Symbolic links are not supported on this platform.
eperm

User does not have privilegesto create symbolic links (SeCr eat eSynbol i cLi nkPri vi | ege onWindows).

Ericsson AB. All Rights Reserved.: Kernel | 85

file

native name_encoding() -> latinl | utf8

Returns the filename encoding mode. If itis| at i n1, the system tranglates no filenames. If itisut f 8, filenames are
converted back and forth to the native filename encoding (usually UTF-8, but UTF-16 on Windows).

open(File, Modes) -> {ok, IoDevice} | {error, Reason}
Types:
File = Filename | iodata()
Filename = nanme_all ()
Modes = [node() | ram]
IoDevice = io_device()
Reason = posix() | badarg | system limit
OpensfileFi | e inthe mode determined by Mbdes, which can contain one or more of the following options:
read
Thefile, which must exist, is opened for reading.
wite
Thefileis opened for writing. It is created if it does not exist. If thefile existsand wr i t e isnot combined with
r ead, thefileistruncated
append

Thefileisopened for writing. It iscreated if it does not exist. Every write operation to afile opened with append
takes place at the end of thefile.

excl usi ve

Thefileisopened for writing. It iscreated if it does not exist. If thefileexists, { error, eexi st} isreturned.

Warning:

This option does not guarantee exclusiveness on file systems not supporting O_EXCL properly, such asNFS.
Do not depend on this option unless you know that the file system supportsit (in general, local file systems
are safe).

raw

Allows faster access to afile, as no Erlang process is needed to handle the file. However, a file opened in this
way has the following limitations:

e The functions in the i 0 module cannot be used, as they can only talk to an Erlang process. Instead, use
functionsread/ 2,read_line/1,andwite/?2.

e Especidly if read_I i ne/ 1 isto be used on ar awfile, it is recommended to combine this option with
option{read_ahead, Si ze} asline-oriented 1/O isinefficient without buffering.

e Only the Erlang process that opened the file can useit.

« A remote Erlang file server cannot be used. The computer on which the Erlang node is running must have
access to the file system (directly or through NFS).

bi nary

Read operations on the file return binaries rather than lists.

86 | Ericsson AB. All Rights Reserved.: Kernel

file

{del ayed_write, Size, Del ay}

Datain subsequentwr i t e/ 2 callsisbuffered until at least Si ze bytes are buffered, or until the oldest buffered
datais Del ay millisecondsold. Then all buffered datais written in one operating system call. The buffered data
is aso flushed before some other file operation thanwr i t e/ 2 is executed.

The purpose of this option is to increase performance by reducing the number of operating system calls. Thus,
thewri t e/ 2 calls must be for sizes significantly lessthan Si ze, and not interspersed by too many other file
operations.

When this option is used, the result of wr i t e/ 2 calls can prematurely be reported as successful, and if awrite
error occurs, the error is reported as the result of the next file operation, which is not executed.

For example, when del ayed write is used, after a number of wite/ 2 cals, cl ose/ 1 can return
{error, enospc}, asthereis not enough space on the disc for previously written data. cl ose/ 1 must
probably be called again, asthefileis still open.

del ayed wite

The same as{del ayed_write, Size, Delay} with reasonable default values for Si ze and Del ay
(roughly some 64 KB, 2 seconds).

{read_ahead, Size}

Activates read data buffering. If r ead/ 2 calls are for significantly less than Si ze bytes, read operations to
the operating system are still performed for blocks of Si ze bytes. The extra data is buffered and returned in
subsequent r ead/ 2 calls, giving a performance gain as the number of operating system callsis reduced.

Ther ead_ahead buffer isalso highly used by functionr ead_| i ne/ 1 inr awmaode, therefore thisoptionis
recommended (for performance reasons) when accessing raw files using that function.

If read/ 2 callsarefor sizes not significantly less than, or even greater than Si ze bytes, no performance gain
can be expected.

read_ahead
Thesameas{r ead_ahead, Si ze} withareasonable default valuefor Si ze (roughly some 64 KB).
conpr essed

Makes it possible to read or write gzip compressed files. Option conpr essed must be combined with r ead
orwrit e, but not both. Notice that the file size obtained withr ead_fi | e_i nf o/ 1 does probably not match
the number of bytes that can be read from a compressed file.

{encodi ng, Encodi ng}

Makes the file perform automatic translation of characters to and from a specific (Unicode) encoding. Notice
that the data supplied towr i t e/ 2 or returned by r ead/ 2 still is byte-oriented; this option denotes only how
datais stored in the disk file.

Depending on the encoding, different methods of reading and writing datais preferred. The default encoding of
I ati n1impliesusingthismodule(f i | e) for reading and writing data as the interfaces provided herework with
byte-oriented data. Using other (Unicode) encodingsmakesthei o(3) functionsget chars,get |i ne,and
put _char s more suitable, asthey can work with the full Unicode range.

If dataissenttoani o_devi ce() inaformat that cannot be converted to the specified encoding, or if data
isread by afunction that returns datain aformat that cannot cope with the character range of the data, an error
occurs and thefileis closed.

Allowed values for Encodi ng:

Ericsson AB. All Rights Reserved.: Kernel | 87

file

latinl
The default encoding. Bytes supplied to thefile, that is, wr i t e/ 2 are written "asis' on thefile. Likewise,

bytesread from the file, that is, r ead/ 2 are returned "asis'. If modulei o(3) isused for writing, the file
can only cope with Unicode characters up to code point 255 (the SO Latin-1 range).

uni code or utf8

Characters are trandated to and from UTF-8 encoding before they are written to or read from the file. A
file opened in this way can be readable using function r ead/ 2, as long as no data stored on the file lies
beyond the 1SO Latin-1 range (0..255), but failure occurs if the data contains Unicode code points beyond
that range. Thefile is best read with the functions in the Unicode aware modulei o(3) .

Bytes written to the file by any means are translated to UTF-8 encoding before being stored on the disk file.
utf16 or {utf16, bi g}

Workslike uni code, but tranglation is done to and from big endian UTF-16 instead of UTF-8.
{utfl16,little}

Workslike uni code, but tranglation is done to and from little endian UTF-16 instead of UTF-8.
utf32 or {utf32, big}

Works like uni code, but translation is done to and from big endian UTF-32 instead of UTF-8.
{utf32,1ittle}

Workslike uni code, but tranglation is done to and from little endian UTF-32 instead of UTF-8.

The Encoding can be changed for afile"onthefly" by using functioni o: set opt s/ 2. So afilecan be analyzed
in latinl encoding for, for example, aBOM, positioned beyond the BOM and then be set for the right encoding
before further reading. For functions identifying BOMs, see module uni code(3) .

Thisoption is not allowed on r awfiles.

ram

Fil e must bei odat a() . Returnsan f d() , which lets module f i | e operate on the data in-memory asif it
isafile.

sync

On platforms supporting it, enables the POSIX O_SYNC synchronous I/O flag or its platform-dependent
equivalent (for example, FI LE_FLAG WRI TE_THROUGH on Windows) so that writesto thefile block until the
datais physically written to disk. However, be aware that the exact semantics of thisflag differ from platform to
platform. For example, none of Linux or Windows guaranteesthat all file metadata are al so written before the call
returns. For precise semantics, check the details of your platform documentation. On platforms with no support
for POSIX O_SYNC or equivalent, use of thesync flag causesopen toreturn{ error, enot sup}.

Returns:
{ok, 1 oDevice}

Thefileis opened in the requested mode. | oDevi ce isareferenceto thefile.

{error, Reason}

The file cannot be opened.

| oDevi ce isrealy the pid of the process that handles the file. This process is linked to the process that originally
opened thefile. If any processto which thel oDevi ce islinked terminates, the fileis closed and the processitself is
terminated. An | oDevi ce returned from this call can be used as an argument to the I/O functions (seei o(3)).

88 | Ericsson AB. All Rights Reserved.: Kernel

file

Note:

Inpreviousversionsof f i | e, modeswere specified asone of theatomsr ead,wri t e,orr ead_wri t e instead
of alist. Thisis till allowed for reasons of backwards compatibility, but is not to be used for new code. Also
notethat read_wri t e isnot allowed in amode list.

Typical error reasons:
enoent
The file does not exist.
eacces
Missing permission for reading the file or searching one of the parent directories.
eisdir
The named file is not aregular file. It can be adirectory, a FIFO, or adevice.
enotdir
A component of the filename is not a directory. On some platforms, enoent isreturned instead.
enospc

There is no space left on the device (if wr i t e access was specified).

path consult(Path, Filename) ->
{ok, Terms, FullName} | {error, Reason}

Types:
Path = [Dir]
Dir = Filename = nane_all ()
Terms = [term()]
FullName = filenane_all ()
Reason =

posi x() |

badarg |

terminated |

system limit |

{Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Pat h (alist of directory names) until the file Fi | ename isfound. If Fi | enane is an absolute
filename, Pat h isignored. Then reads Erlang terms, separated by '.", from thefile.

Returns one of the following:
{ok, Terns, Full Nane}
Thefileis successfully read. Ful | Name isthe full name of thefile.
{error, enoent}
Thefile cannot be found in any of the directoriesin Pat h.
{error, atom)}
An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.

Ericsson AB. All Rights Reserved.: Kernel | 89

file

{error, {Line, Md, Ternt}}
An error occurred when interpreting the Erlang termsin the file. Usef or mat _er r or / 1 to convert the three-
element tuple to an English description of the error.

The encoding of Fi | ename can be set by a comment as described in epp(3) .

path eval(Path, Filename) -> {ok, FullName} | {error, Reason}
Types.
Path = [Dir :: name_all ()]
Filename = nane_all ()
FullName = fil enanme_all ()
Reason =
posi x() |
badarg |
terminated |
system limit |
{Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Pat h (alist of directory names) until the file Fi | enane isfound. If Fi | enamne is an absolute
filename, Pat h is ignored. Then reads and evaluates Erlang expressions, separated by "' (or '), a sequence of
expressions is also an expression), from the file. The result of evaluation is not returned; any expression sequence in
the file must be there for its side effect.

Returns one of the following:
{ok, Full Nane}
Thefileisread and evaluated. Ful | Nane isthe full name of thefile.
{error, enoent}
The file cannot be found in any of the directoriesin Pat h.
{error, atom)}
An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.
{error, {Line, Md, Tern}}

An error occurred when interpreting the Erlang expressions in the file. Use f or mat _err or/ 1 to convert the
three-element tuple to an English description of the error.

The encoding of Fi | enane can be set by acomment as described in epp(3) .

path open(Path, Filename, Modes) ->
{ok, IoDevice, FullName} | {error, Reason}

Types.
Path = [Dir :: name_all ()]
Filename = nane_all ()
Modes = [nopde()]
IoDevice = io_device()
FullName = filenane_all ()
Reason = posix() | badarg | system limit

Searches the path Pat h (alist of directory names) until the file Fi | enane isfound. If Fi | enane is an absolute
filename, Pat h isignored. Then opens the file in the mode determined by Mbdes.

90 | Ericsson AB. All Rights Reserved.: Kernel

file

Returns one of the following:
{ok, loDevice, Full Nane}

Thefileis opened in the requested mode. | oDevi ce isareference to the file and Ful | Nane isthe full name
of thefile.

{error, enoent}

The file cannot be found in any of the directoriesin Pat h.
{error, atom)}

The file cannot be opened.

path script(Path, Filename) ->
{ok, Value, FullName} | {error, Reason}

Types:
Path = [Dir :: nane_all ()]
Filename = nane_all ()
Value = term()
FullName = filenane_all ()

Reason =
posi x() |
badarg |
terminated |
system limit |
{Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Pat h (alist of directory names) until the file Fi | ename isfound. If Fi | enane is an absolute
filename, Pat h is ignored. Then reads and evaluates Erlang expressions, separated by ' (or '), a sequence of
expressionsis also an expression), from the file.
Returns one of the following:
{ok, Value, Full Nane}

Thefileisread and evaluated. Ful | Nane isthefull name of thefileand Val ue the value of the last expression.
{error, enoent}

The file cannot be found in any of the directoriesin Pat h.
{error, atom)}

An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.
{error, {Line, Md, Tern}}

An error occurred when interpreting the Erlang expressions in the file. Use f or mat _err or/ 1 to convert the
three-element tuple to an English description of the error.

The encoding of Fi | enane can be set by acomment as described in epp(3) .
path script(Path, Filename, Bindings) ->

{ok, Value, FullName} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 91

file

Path = [Dir :: name_all ()]

Filename = nane_all ()

Bindings = erl _eval : bi ndi ng_struct ()
Value = term()

FullName = fil enanme_all ()

Reason =

posi x() |

badarg |

terminated |

system limit |

{Line :: integer(), Mod :: module(), Term :: term()}

Thesameaspat h_scri pt/ 2 but thevariablebindingsBi ndi ngs areusedintheevaluation. Seeer | _eval (3)
about variable bindings.

pid2name(Pid) -> {ok, Filename} | undefined

Types:
Filename = filenane_all ()
Pid = pid()

If Pi d isan1/O device, that is, apid returned from open/ 2, this function returns the filename, or rather:
{ok, Filenane}

If the file server of this node is not a slave, the file was opened by the file server of this node (this implies that
Pi d must be alocal pid) and the fileis not closed. Fi | enamne isthe filename in flat string format.

undef i ned

In all other cases.

Warning:
This function is intended for debugging only.

position(IoDevice, Location) ->
{ok, NewPosition} | {error, Reason}

Types.
IoDevice = io_device()
Location = Il ocation()

NewPosition = integer()
Reason = posix() | badarg | terminated

Sets the position of the file referenced by | oDevi ce toLocat i on. Returns{ ok, NewPosi ti on} (asabsolute
offset) if successful, otherwise{ error, Reason}.Locati on isoneof thefollowing:

O f set

Thesameas{bof, O fset}.
{bof, Ofset}

Absolute offset.

92 | Ericsson AB. All Rights Reserved.: Kernel

file

{cur, Ofset}

Offset from the current position.
{eof, Ofset}

Offset from the end of file.
bof | cur | eof

The same as above with Of f set 0.

Notice that offsets are counted in bytes, not in characters. If the file is opened using some other encodi ng than
I ati n1, onebytedoesnot correspond to one character. Positioning in such afile can only be doneto known character
boundaries. That is, to a position earlier retrieved by getting a current position, to the beginning/end of the file or to
some other position known to be on a correct character boundary by some other means (typically beyond a byte order
mark in the file, which has aknown byte-size).

A typical error reason is:
ei nval

Either Locat i on isillegal, or it isevaluated to a negative offset in the file. Notice that if the resulting position
isanegative value, theresult is an error, and after the call the file position is undefined.

pread(IoDevice, LocNums) -> {ok, DatalL} | eof | {error, Reason}
Types.

IoDevice = io_device()
LocNums =
[{Location :: location(), Number :: integer() >= 0}]

DatalL = [Datal]
Data = string() | binary() | eof
Reason = posix() | badarg | terminated
Performs a sequence of pr ead/ 3 in one operation, which is more efficient than calling them one at atime. Returns

{ok, [Data, ...]} or{error, Reason}, whereeach Dat a, the result of the corresponding pr ead, is
either alist or abinary depending on the mode of thefile, or eof if the requested position is beyond end of file.

Asthe position is specified as a byte-offset, take specia caution when working with fileswhere encodi ng is set to
something elsethan | at i n1, as not every byte position isavalid character boundary on such afile.

pread(IoDevice, Location, Number) ->
{ok, Data} | eof | {error, Reason}

Types:
IoDevice = io_device()
Location = | ocation()

Number = integer() >= 0
Data = string() | binary()
Reason = posi x() | badarg | terminated

Combines posi ti on/ 2 andr ead/ 2 in one operation, which is more efficient than calling them one at atime. If
| oDevi ce isopened in r awmode, some restrictions apply:

* Locati onisonly alowed to be an integer.
* Thecurrent position of the file is undefined after the operation.

Ericsson AB. All Rights Reserved.: Kernel | 93

file

Asthe position is specified as a byte-offset, take specia caution when working with fileswhereencodi ng is set to
something elsethan | at i n1, as not every byte position isavalid character boundary on such afile.

pwrite(IoDevice, LocBytes) -> ok | {error, {N, Reason}}

Types:
IoDevice = io_device()
LocBytes = [{Location :: location(), Bytes :: iodata()}]

N = integer() >= 0
Reason = posix() | badarg | terminated

Performs a sequence of pwr i t e/ 3 in one operation, which is more efficient than calling them one at atime. Returns
okor{error, {N, Reason}},whereNisthenumber of successful writes done before the failure.

When positioning in afile with other encodi ng than| at i n1, caution must be taken to set the position on a correct
character boundary. For details, seeposi ti on/ 2.

pwrite(IoDevice, Location, Bytes) -> ok | {error, Reason}

Types:
IoDevice = io_device()
Location = I ocation()

Bytes = iodata()
Reason = posix() | badarg | terminated
Combinesposi ti on/ 2 andwr it e/ 2 in one operation, which is more efficient than calling them one at atime. If
| oDevi ce has been opened in r awmode, some restrictions apply:
e Locati onisonly alowed to be an integer.
* Thecurrent position of the file is undefined after the operation.

When positioning in afile with other encodi ng than| at i n1, caution must be taken to set the position on a correct
character boundary. For details, see posi ti on/ 2.

read(IoDevice, Number) -> {ok, Data} | eof | {error, Reason}
Types:

IoDevice = io_device() | atom()

Number = integer() >= 0

Data = string() | binary()

Reason =

posi x() |

badarg |

terminated |

{no translation, unicode, latinl}

Reads Nunber bytes/characters from the file referenced by | oDevi ce. The functions r ead/ 2, pr ead/ 3, and
read_I| i ne/ 1 arethe only waysto read from afile opened in r aw mode (although they work for normally opened
files, too).

For files where encodi ng is set to something else than | at i n1, one character can be represented by more than
one byte on the file. The parameter Nunber aways denotes the number of characters read from the file, while the
position in the file can be moved much more than this number when reading a Unicodefile.

Also, if encodi ng isset to something elsethan| at i n1, ther ead/ 3 call failsif the data contains characterslarger
than 255, which iswhy modulei o(3) isto be preferred when reading such afile.

94 | Ericsson AB. All Rights Reserved.: Kernel

file

The function returns:
{ok, Dat a}

If thefile was opened in binary mode, the read bytes arereturned in abinary, otherwisein alist. Thelist or binary
is shorter than the number of bytes requested if end of file was reached.

eof
Returned if Nurmber >0 and end of file was reached before anything at all could be read.
{error, Reason}
An error occurred.
Typical error reasons:
ebadf
Thefileis not opened for reading.
{no_translation, unicode, |atinl}

Thefileisopened with another encodi ng than| at i n1 and the datain thefile cannot be translated to the byte-
oriented data that this function returns.

read file(Filename) -> {ok, Binary} | {error, Reason}

Types:
Filename = nane_all ()
Binary = binary()
Reason = posix() | badarg | terminated | system limit

Returns { ok, Bi nary}, where Bi nary is a binary data object that contains the contents of Fi | ename, or
{error, Reason} if anerror occurs.

Typical error reasons:
enoent
The file does not exist.
eacces
Missing permission for reading thefile, or for searching one of the parent directories.
eisdir
The named file isadirectory.
enotdir
A component of the filename is not a directory. On some platforms, enoent isreturned instead.
enomem

There is not enough memory for the contents of the file.
read file info(Filename) -> {ok, FileInfo} | {error, Reason}

read file info(Filename, Opts) -> {ok, FileInfo} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 95

file

Filename = nane_all ()

Opts = [file_info_option()]
FileInfo = file_info()
Reason = posi x() | badarg

Retrieves information about a file. Returns { ok, Fi | el nf o} if successful, otherwise {error, Reason}.
Fil el nfoisarecordfil e_i nf o, defined in the Kernel includefilefi | e. hrl . Include the following directive
in the module from which the function is called:

-include lib("kernel/include/file.hrl").

The time type returned in ati e, nti e, and ct i ne is dependent on thetimetypeset inOpts :: {tine,
Type} asfollows:

| ocal
Returns local time.
uni ver sal
Returns universal time.
posi x
Returns seconds since or before Unix time epoch, which is 1970-01-01 00:00 UTC.
Defaultis{ti ne, |ocal}.
If the option r awis set, the file server is not called and only information about local filesis returned.

Note:

Asfiletimes are stored in POSIX time on most OS, it is faster to query file information with option posi x.

Therecordf i | e_i nf o containsthe following fields:

size = integer() >=0
Size of filein bytes.

type = device | directory | other | regular | symink
Thetype of thefile.

access = read | wite | read_wite | none
The current system access to thefile.

atime = date tine() | integer() >=0
The last time the file was read.
nime = date_time() | integer() >= 0

The last time the file was written.
ctime = date_time() | integer() >=0

The interpretation of this time field depends on the operating system. On Unix, it is the last time the file or the
i node was changed. In Windows, it is the create time.

96 | Ericsson AB. All Rights Reserved.: Kernel

file

nmode = integer() >= 0
The file permissions as the sum of the following bit values:
8#00400
read permission; owner
8#00200
write permission: owner
8#00100
execute permission: owner
8#00040
read permission: group
8#00020
write permission: group
8#00010
execute permission: group
8#00004
read permission: other
8#00002
write permission: other
8#00001
execute permission: other
16#800
set user id on execution
16#400
set group id on execution
On Unix platforms, other bits than those listed above may be set.
links = integer() >= 0
Number of links to the file (thisis always 1 for file systems that have no concept of links).
maj or _device = integer() >= 0

Identifies the file system where the file islocated. In Windows, the number indicates adrive as follows. 0 means
A:, 1 means B:, and so on.

m nor_device = integer() >= 0

Only valid for character devices on Unix. In all other cases, thisfield is zero.
inode = integer() >=0

Givesthei node number. On non-Unix file systems, thisfield is zero.
uid = integer() >= 0

Indicates the owner of the file. On non-Unix file systems, thisfield is zero.

Ericsson AB. All Rights Reserved.: Kernel | 97

file

gid = integer() >= 0
Gives the group that the owner of the file belongsto. On non-Unix file systems, thisfield is zero.
Typical error reasons:
eacces
Missing search permission for one of the parent directories of thefile.
enoent
Thefile does not exist.
enotdir

A component of the filename is not a directory. On some platforms, enoent isreturned instead.

read line(IoDevice) -> {ok, Data} | eof | {error, Reason}

Types:
IoDevice = io_device() | atom()
Data = string() | binary()
Reason =
posi x() |
badarg |
terminated |

{no_translation, unicode, latinl}

Reads a line of bytes/characters from the file referenced by | oDevi ce. Lines are defined to be delimited by the
linefeed (LF, \ n) character, but any carriage return (CR, \ r) followed by a newline is also treated as a single
LF character (the carriage return is silently ignored). The line is returned including the LF, but excluding any CR
immediately followed by an LF. This behaviour is consistent with the behaviour of i 0: get _| i ne/ 2. If end of file
is reached without any LF ending the last line, aline with no trailing LF is returned.

The function can be used on files opened in r aw mode. However, it isinefficient to use it on r awfilesif the fileis
not opened with option { r ead_ahead, Si ze} specified. Thus, combiningr awand {r ead_ahead, Si ze}
is highly recommended when opening atext file for raw line-oriented reading.

If encodi ng is set to something elsethan | at i n1, theread_I| i ne/ 1 cal fails if the data contains characters
larger than 255, why modulei o(3) isto be preferred when reading such afile.

The function returns:
{ok, Data}

One line from the file is returned, including the trailing LF, but with CRLF sequences replaced by asingle LF
(see above).

If thefileis opened in binary mode, the read bytes are returned in abinary, otherwise in alist.
eof
Returned if end of file was reached before anything at all could be read.
{error, Reason}
An error occurred.
Typical error reasons:
ebadf
Thefileis not opened for reading.

98 | Ericsson AB. All Rights Reserved.: Kernel

file

{no_transl ation, unicode, |atinl}

The file is opened with another encodi ng than | ati n1 and the data on the file cannot be translated to the
byte-oriented data that this function returns.

read link(Name) -> {ok, Filename} | {error, Reason}
Types:

Name = nane_al |l ()

Filename = fil enane()

Reason = posix() | badarg

Returns{ ok, Fi | enane} if Name refersto asymbolic link that is not araw filename, or { err or, Reason}
otherwise. On platforms that do not support symbolic links, the return valueis{ err or, enot sup}.

Typical error reasons:
ei nval

Nane does not refer to a symbolic link or the name of the file that it refers to does not conform to the expected
encoding.

enoent
The file does not exist.
enot sup

Symbolic links are not supported on this platform.

read link all(Name) -> {ok, Filename} | {error, Reason}
Types.

Name = nane_all ()

Filename = filenane_all ()

Reason = posix() | badarg

Returns{ ok, Fi |l enane} if Nane referstoasymboliclink or { error, Reason} otherwise. On platformsthat
do not support symbolic links, the return valueis{ er r or , enot sup}.

Noticethat Fi | enane can be either alist or abinary.
Typical error reasons.
ei nval
Nare does not refer to a symbolic link.
enoent
The file does not exist.
enot sup
Symbolic links are not supported on this platform.

read link info(Name) -> {ok, FileInfo} | {error, Reason}

read link info(Name, Opts) -> {ok, FileInfo} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 99

file

Name name_al | ()

Opts [file_info_option()]
FileInfo = file_info()
Reason = posi x() | badarg

Workslikeread file_info/1, 2 exceptthat if Name isasymbolic link, information about the link is returned
inthefi | e_i nf orecordandthet ype field of therecordissettosym i nk.

If the option r awis set, the file server is not called and only information about local filesis returned.

If Narre is not asymboalic link, this function returns the sasmeresult asr ead_fi | e_i nf o/ 1. On platforms that do
not support symbolic links, this function is always equivalenttor ead_fil e_i nf o/ 1.

rename(Source, Destination) -> ok | {error, Reason}

Types:
Source = Destination = nane_all ()
Reason = posix() | badarg

Triestorenamethefile Sour ce toDest i nat i on. It can be used to movefiles (and directories) between directories,
but it is not sufficient to specify the destination only. The destination filename must also be specified. For example,

if bar isanormal file and f oo and baz are directories, r enane(" f oo/ bar", "baz") returns an error, but
renanme("foo/ bar", "baz/bar") succeeds. Returnsok if it issuccessful.
Note:

Renaming of open filesis not allowed on most platforms (see eacces below).

Typical error reasons:
eacces

Missing read or write permissions for the parent directories of Sour ce or Dest i nat i on. On some platforms,
thiserror isgiven if either Sour ce or Dest i nat i on isopen.

eexi st

Dest i nat i on isnot an empty directory. On some platforms, also given when Sour ce and Dest i nati on
are not of the same type.

ei nval
Sour ce isaroot directory, or Dest i nat i on isasubdirectory of Sour ce.
eisdir
Desti nati on isadirectory, but Sour ce isnot.
enoent
Sour ce does not exist.
enotdir
Sour ce isadirectory, but Dest i nat i on isnot.
exdev

Sour ce and Dest i nat i on are on different file systems.

100 | Ericsson AB. All Rights Reserved.: Kernel

file

script(Filename) -> {ok, Value} | {error, Reason}
Types.
Filename = nane_all ()
Value = term()
Reason =
posi x() |
badarg |
terminated |
system limit |
{Line :: integer(), Mod :: module(), Term :: term()}
Reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of expressionsis also an expression), from
thefile.

Returns one of the following:
{ok, Val ue}
Thefileisread and evaluated. Val ue isthe value of the last expression.

{error, atom)}
An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.

{error, {Line, Md, Tern}}
An error occurred when interpreting the Erlang expressions in the file. Usef or mat _err or/ 1 to convert the
three-element tuple to an English description of the error.

The encoding of Fi | enane can be set by acomment as described in epp(3) .

script(Filename, Bindings) -> {ok, Value} | {error, Reason}
Types:

Filename = nane_all ()

Bindings = erl _eval : bi ndi ng_struct ()

Value = term()

Reason =

posi x() |

badarg |

terminated |

system limit |

{Line :: integer(), Mod :: module(), Term :: term()}

Thesameasscri pt/ 1 but thevariable bindings Bi ndi ngs areused inthe evaluation. Seeer | _eval (3) about
variable bindings.

sendfile(Filename, Socket) ->
{ok, integer() >= 0} |
{error, inet:posix() | closed | badarg | not owner}

Types:
Filename = nane_all ()
Socket = inet:socket ()

SendsthefileFi | enane to Socket . Returns{ ok, Byt esSent} if successful, otherwise{ error, Reason}.

Ericsson AB. All Rights Reserved.: Kernel | 101

file

sendfile(RawFile, Socket, Offset, Bytes, Opts) ->
{ok, integer() >= 0} |
{error, inet:posix() | closed | badarg | not owner}

Types:
RawFile = fd()
Socket = inet:socket ()

Offset = Bytes = integer() >= 0
Opts = [sendfile_option()]
sendfile option() =
{chunk size, integer() >= 0} | {use threads, boolean()}

SendsByt es fromthefilereferenced by RawFi | e beginningat Of f set toSocket . Returns{ ok, Byt esSent}
if successful, otherwise{ error, Reason}.If Byt es issettoO al data after the specified Of f set issent.

Thefile used must be opened using the r awflag, and the process calling sendf i | e must be the controlling process
of the socket. Seegen_t cp: control | i ng_process/ 2.

If the OS used does not support sendf i | e, an Erlang fallback using r ead/ 2 and gen_t cp: send/ 2 isused.
The option list can contain the following options:
chunk_si ze

The chunk size used by the Erlang fallback to send data. If using the fallback, set thisto avalue that comfortably
fitsin the systems memory. Default is 20 MB.

use_t hreads

Instructs the emulator to use the async thread pool for the sendf i | e system call. This can be useful if the
OS you are running on does not properly support non-blocking sendf i | e calls. Notice that using async
threads potentially makesyour system vulnerableto slow client attacks. If settot r ue and no async threadsare
available, thesendfi | e call returns{error, ei nval }. Introduced in Erlang/OTP 17.0. Default isf al se.

set cwd(Dir) -> ok | {error, Reason}
Types:
Dir = nane() | EncodedBinary
EncodedBinary = binary()
Reason = posix() | badarg | no _translation

Sets the current working directory of the file server to Di r . Returns ok if successful.

Thefunctionsinthemodulef i | e usually treat binariesasraw filenames, that is, they are passed "asis"' even whenthe
encoding of the binary does not agreewith nat i ve_nane_encodi ng() . However, this function expects binaries
to be encoded according to the value returned by nat i ve_nanme_encodi ng() .

Typical error reasons are:
enoent
The directory does not exist.
enotdir
A component of Di r isnot adirectory. On some platforms, enoent is returned.
eacces

Missing permission for the directory or one of its parents.

102 | Ericsson AB. All Rights Reserved.: Kernel

file

badar g
Di r has an improper type, such astuple.
no_translation

Dir isabinary() with characters coded in ISO-latin-1 and the VM is operating with unicode filename
encoding.

Warning:

In afuture release, a bad type for argument Di r will probably generate an exception.

sync(IoDevice) -> ok | {error, Reason}
Types:
IoDevice = io_device()
Reason = posix() | badarg | terminated
Ensuresthat any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. On some
platforms, this function might have no effect.
A typical error reason is:
enospc

Not enough space |eft to write the file.

truncate(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = i o_device()

Reason = posix() | badarg | terminated

Truncates the file referenced by | oDevi ce at the current position. Returns ok if successful, otherwise { er r or,
Reason}.

write(IoDevice, Bytes) -> ok | {error, Reason}
Types:
TIoDevice = io_device() | atom()
Bytes = iodata()
Reason = posix() | badarg | terminated
Writes Byt es to the file referenced by | oDevi ce. This function is the only way to write to afile opened in r aw
mode (although it worksfor normally opened filestoo). Returnsok if successful, and{ er r or, Reason} otherwise.

If thefileis opened with encodi ng set to something elsethan | at i n1, each byte written can result in many bytes
being written to the file, as the byte range 0..255 can represent anything between one and four bytes depending on
value and UTF encoding type.

Typical error reasons:
ebadf
Thefileis not opened for writing.

Ericsson AB. All Rights Reserved.: Kernel | 103

file

enospc

No spaceis left on the device.

write file(Filename, Bytes) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Bytes = iodata()

Reason = posix() | badarg | terminated | system limit

Writes the contents of thei odat a term Byt es tofileFi | enane. Thefileiscreated if it does not exist. If it exists,
the previous contents are overwritten. Returns ok if successful, otherwise{ error, Reason}.

Typical error reasons:
enoent

A component of the filename does not exist.
enotdir

A component of the filename is not adirectory. On some platforms, enoent isreturned instead.
enospc

No spaceis left on the device.
eacces

Missing permission for writing the file or searching one of the parent directories.
eisdir

The named file isadirectory.

write file(Filename, Bytes, Modes) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Bytes = iodata()

Modes = [npde()]

Reason = posix() | badarg | terminated | system limit

Sameaswrite fil e/ 2,buttakesathird argument Modes, alist of possible modes, seeopen/ 2. The mode flags
bi nary andwri t e areimplicit, so they are not to be used.

write file info(Filename, FileInfo) -> ok | {error, Reason}
write file info(Filename, FilelInfo, Opts) -> ok | {error, Reason}
Types:
Filename = nane_all ()
Opts = [file_info_option()]
FileInfo = file_info()
Reason = posix() | badarg
Changes file information. Returns ok if successful, otherwise {error, Reason}. Fil el nfo is a record

file_info,definedintheKerne includefilefi | e. hrl . Includethefollowing directiveinthe modulefromwhich
the functionis called

104 | Ericsson AB. All Rights Reserved.: Kernel

file

-include lib("kernel/include/file.hrl").

Thetimetypesetinati me, ntime, and cti ne dependsonthetimetypesetinOpts :: {tine, Type} as
follows:

| ocal

Interprets the time set aslocal.
uni ver sal

Interpretsit as universal time.
posi x

Must be seconds since or before Unix time epoch, which is 1970-01-01 00:00 UTC.
Defaultis{ti me, |ocal}.
If the option r awis set, the file server is not called and only information about local filesis returned.
The following fields are used from the record, if they are specified:

atime = date tine() | integer() >= 0
The last time the file was read.
nime = date_time() | integer() >= 0

The last time the file was written.
ctime = date tine() | integer() >=0

On Unix, any value specified for this field is ignored (the "ctime" for the file is set to the current time). On
Windows, thisfield isthe new creation time to set for thefile.

node = integer() >= 0

The file permissions as the sum of the following bit values:
8#00400

Read permission: owner
8#00200

Write permission: owner
8#00100

Execute permission: owner
8#00040

Read permission: group
8#00020

Write permission: group
8#00010

Execute permission: group
8#00004

Read permission: other

Ericsson AB. All Rights Reserved.: Kernel | 105

file

8#00002
Write permission: other
8#00001
Execute permission: other
16#800
Set user id on execution
16#400
Set group id on execution
On Unix platforms, other bits than those listed above may be set.
uid = integer() >= 0
Indicates the file owner. Ignored for non-Unix file systems.
gid = integer() >=0
Gives the group that the file owner belongsto. Ignored for non-Unix file systems.
Typical error reasons:
eacces
Missing search permission for one of the parent directories of thefile.
enoent
Thefile does not exist.
enotdir

A component of the filename is not a directory. On some platforms, enoent isreturned instead.

POSIX Error Codes

e eacces - Permission denied

e eagai n - Resource temporarily unavailable
* ebadf - Bad file number

e ebusy - Filebusy

e edquot - Disk quota exceeded

e eexi st - Fileadready exists

« efault -Badaddressin system call argument
« efbig-Filetoolarge

e eintr - Interrupted system call

e einval -Invalidargument

e eio-l/Oeror

e eisdir -lllegal operation on adirectory

» el oop - Too many levels of symbalic links
« enfil e-Toomany open files

* enlink-Toomany links

e enanet ool ong - Filenametoo long

« enfil e - Filetable overflow

* enodev - No such device

106 | Ericsson AB. All Rights Reserved.: Kernel

file

e enoent - Nosuchfileor directory
e enonem- Not enough memory

e enospc - No space left on device
e enot bl k - Block device required
e enotdir - Notadirectory

e enot sup - Operation not supported
e enxi o - Nosuch device or address
* eper m- Not owner

e epi pe - Broken pipe

e erofs - Read-only file system

e espi pe - Invalid seek

e esrch - No such process

« estal e-Staeremotefilehhandle
* exdev - Cross-domain link

Performance

Some operating system file operations, for example, async/ 1 or cl ose/ 1 on a huge file, can block their calling
thread for seconds. If this affects the emulator main thread, the responsetimeis no longer in the order of milliseconds,
depending on the definition of "soft" in soft real-time system.

If the device driver thread pool is active, file operations are done through those threads instead, so the emulator can
go on executing Erlang processes. Unfortunately, the time for serving a file operation increases because of the extra
scheduling required from the operating system.

If the device driver thread pool is disabled or of size 0, large file reads and writes are segmented into many smaller,
which enable the emulator to serve other processes during the file operation. This has the same effect as when using
the thread pool, but with larger overhead. Other file operations, for example, sync/ 1 or cl ose/ 1 on a huge file,
still are a problem.

For increased performance, raw files are recommended. Raw files use the file system of the host machine of the node.

Note:

For normal files (non-raw), the file server isused to find thefiles, and if the nodeisrunning itsfile server asdave
to the file server of another node, and the other node runs on some other host machine, they can have different
file systems. However, thisis seldom a problem.

A normal fileisreally aprocess soit can beused asan 1/O device (seei 0). Therefore, when dataiswritten to anormal
file, the sending of the data to the file process, copies all data that are not binaries. Opening the file in binary mode
and writing binariesis therefore recommended. If the fileis opened on another node, or if the file server runs as slave
to the file server of another node, also binaries are copied.

Caching datato reduce the number of file operations, or rather the number of callsto thefiledriver, generally increases
performance. The following function writes 4 MBytes in 23 seconds when tested:

create file slow(Name, N) when integer(N), N >= 0 ->
{ok, FD} = file:open(Name, [raw, write, delayed write, binary]),
ok = create file slow(FD, 0, N),
ok = ?FILE MODULE:close(FD),

Ericsson AB. All Rights Reserved.: Kernel | 107

file

ok.

create file slow(FD, M, M) ->
ok;

create file slow(FD, M, N) ->
ok = file:write(FD, <<M:32/unsigned>>),
create file slow(FD, M+1, N).

The following, functionally equivalent, function collects 1024 entries into a list of 128 32-byte binaries before each
call tow i t e/ 2 and so does the same work in 0.52 seconds, which is 44 times faster:

create file(Name, N) when integer(N), N >= 0 ->
{ok, FD} = file:open(Name, [raw, write, delayed write, binary]),

ok = create file(FD, 0, N),
ok = ?FILE MODULE:close(FD),
ok.

create file(FD, M, M) ->
ok;
create file(FD, M, N) when M + 1024 =< N ->
create file(FD, M, M + 1024, [1),
create file(FD, M + 1024, N);
create file(FD, M, N) ->
create file(FD, M, N, []).

create file(FD, M, M, R) ->
ok = file:write(FD, R);
create file(FD, M, NO, R) when M + 8 =< NO
N1 = NO-1, N2 NO-2, N3 NO-3, N4
N5 = NO-5, N6 NO-6, N7 NO-7, N8
create file(FD, M, N8,
[<<N8:32/unsigned, N7:32/unsigned,
N6:32/unsigned, N5:32/unsigned,
N4:32/unsigned, N3:32/unsigned,
N2:32/unsigned, N1:32/unsigned>> | R]);
create file(FD, M, NO, R) ->
N1 = NO-1,
create file(FD, M, N1, [<<N1:32/unsigned>> | R]).

NO-4,
NO-8,

nnv

Note:

Trust only your own benchmarks. If thelistlengthincr eat e_f i | e/ 2 aboveisincreased, it runsslightly faster,
but consumes more memory and causes more memory fragmentation. How much this affects your application is
something that this simple benchmark cannot predict.

If the size of each binary isincreased to 64 bytes, it also runs slightly faster, but the code is then twice as clumsy.
In the current implementation, binaries larger than 64 bytes are stored in memory common to all processes and
not copied when sent between processes, while these smaller binaries are stored on the process heap and copied
when sent like any other term.

So, with a binary size of 68 bytes, create_fi | e/ 2 runs 30 percent slower than with 64 bytes, and causes
much more memory fragmentation. Notice that if the binaries were to be sent between processes (for example,
anon-raw file), the results would probably be completely different.

A raw fileisreally aport. When writing datato aport, it is efficient to write alist of binaries. It is not needed to flatten
adeep list before writing. On Unix hosts, scatter output, which writes a set of buffersin one operation, is used when

108 | Ericsson AB. All Rights Reserved.: Kernel

file

possible. Inthisway wri te(FD, [Binl, Bin2 | Bin3]) writesthe contents of the binarieswithout copying
the data at all, except for perhaps deep down in the operating system kernel.

For raw files, pwr i t e/ 2 and pr ead/ 2 areefficiently implemented. Thefiledriver iscaled only oncefor the whole
operation, and the list iteration is done in the file driver.

Theoptionsdel ayed_writ e andr ead_ahead to open/ 2 make thefile driver cache data to reduce the number
of operating system calls. The function cr eat e_fi | e/ 2 in the recent example takes 60 seconds without option
del ayed_writ e, whichis2.6 timesslower.

As abad example, creat e _fil e_sl ow 2 without options r aw, bi nary, and del ayed_wri t e, meaning it
calsopen(Nane, [wite]),needslmin 20 secondsforthejob, whichis3.5timessdower thanthefirst example,
and 150 times slower than the optimized create_fil e/ 2.

Warning:

If an error occurs when accessing an open file with modulei o, the process handling the file exits. The dead file
process can hang if a process triesto accessit later. Thiswill be fixed in afuture release.

See Also

filenane(3)

Ericsson AB. All Rights Reserved.: Kernel | 109

gen_sctp

gen_sctp

Erlang module

This module provides functions for communicating with sockets using the SCTP protocol. The implementation
assumes that the OS kernel supports SCTP (RFC 2960) through the user-level Sockets API Extensions.

During development, this implementation was tested on:

e Linux Fedora Core 5.0 (kernel 2.6.15-2054 or later is needed)
+ Solaris10, 11

During OTP adaptation it was tested on:

e SUSE Linux Enterprise Server 10 (x86_64) kernel 2.6.16.27-0.6-smp, with Iksctp-tools-1.0.6

» Briefly on Solaris 10

e SUSE Linux Enterprise Server 10 Service Pack 1 (x86_64) kernel 2.6.16.54-0.2.3-smp with Iksctp-tools-1.0.7
* FreeBSD 8.2

This module was written for one-to-many style sockets (type seqpacket). With the addition of peel of f / 2, one-
to-one style sockets (type st r ean) were introduced.

Record definitions for this module can be found using:

-include lib("kernel/include/inet sctp.hrl").

These record definitions use the "new" spelling "adaptation’, not the deprecated 'adaption’, regardless of which spelling
the underlying C API uses.

Data Types
assoc_id()

An opague term returned in, for example, #sct p_paddr _change{}, which identifies an association for an SCTP
socket. The term is opaque except for the special value 0, which has a meaning such as "the whole endpoint" or "all
future associations'.

option() =
{active, true | false | once | -32768..32767} |
{buffer, integer() >= 0} |
{dontroute, boolean()} |
{high msgq watermark, integer() >= 1} |
{linger, {boolean(), integer() >= 0}} |
{low msgq watermark, integer() >= 1} |
{mode, list | binary} |
list |
binary |
{priority, integer() >= 0} |
{recbuf, integer() >= 0} |
{reuseaddr, boolean()} |
{ipv6 vo6only, boolean()} |
{sctp adaptation layer, #sctp setadaptation{}} |
{sctp associnfo, #sctp assocparams{}} |
{sctp autoclose, integer() >= 0} |

110 | Ericsson AB. All Rights Reserved.: Kernel

href
href

gen_sctp

{sctp _default send param, #sctp sndrcvinfo{}} |
{sctp delayed ack time, #sctp assoc value{}} |
{sctp disable fragments, boolean()} |

{sctp _events, #sctp event subscribe{}} |

{sctp get peer addr info, #sctp paddrinfo{}} |
{sctp i want mapped v4 addr, boolean()} |

{sctp _initmsg, #sctp initmsg{}} |

{sctp _maxseg, integer() >= 0} |

{sctp _nodelay, boolean()} |

{sctp peer addr params, #sctp paddrparams{}} |
{sctp _primary addr, #sctp prim{}} |

{sctp rtoinfo, #sctp rtoinfo{}} |

{sctp _set peer primary addr, #sctp setpeerprim{}} |
{sctp status, #sctp status{}} |

{sndbuf, integer() >= 0} |

{tos, integer() >= 0}

One of the SCTP Socket Options.

option_name() =
active |
buffer |
dontroute |
high msgq watermark |
linger |
low_msgq watermark |
mode |
priority |
recbuf |
reuseaddr |
ipv6_v6only |
sctp_adaptation layer |
sctp_associnfo |
sctp_autoclose |
sctp _default send param |
sctp delayed ack time |
sctp disable fragments |
sctp_events |
sctp_get peer addr info |
sctp i want mapped v4 addr |
sctp_initmsg |
sctp _maxseg |
sctp _nodelay |
sctp _peer addr params |
sctp_primary addr |
sctp_rtoinfo |
sctp set peer primary addr |
sctp_status |
sndbuf |
tos

sctp socket()
Socket identifier returned from open/ * .

Ericsson AB. All Rights Reserved.: Kernel | 111

gen_sctp

Exports

abort(Socket, Assoc) -> ok | {error, inet:posix()}
Types.

Socket = sctp_socket ()

Assoc = #sctp assoc change{}

Abnormally terminates the association specified by Assoc, without flushing of unsent data. The socket itself remains
open. Other associations opened on this socket are till valid, and the socket can be used in new associations.

close(Socket) -> ok | {error, inet:posix()}
Types:
Socket = sctp_socket ()
Closesthe socket and all associationson it. The unsent dataisflushed asineof / 2. Thecl ose/ 1 call isblocking or

otherwise depending of the value of thel i nger socket option. If cl ose does not linger or linger time-out expires,
the call returns and the data is flushed in the background.

connect(Socket, Addr, Port, Opts) ->
{ok, Assoc} | {error, inet:posix()}

Types:
Socket = sctp_socket ()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_nunber()

Opts = [Opt :: option()]
Assoc = #sctp assoc change{}
Sameasconnect (Socket, Addr, Port, Opts, infinity).

connect(Socket, Addr, Port, Opts, Timeout) ->
{ok, Assoc} | {error, inet:posix()}

Types:
Socket = sctp_socket ()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_nunber()
Opts = [Opt :: option()]

Timeout = timeout()
Assoc = #sctp assoc_change{}

Establishes a new association for socket Socket , with the peer (SCTP server socket) specified by Addr and Por t .
Ti meout , isexpressed in milliseconds. A socket can be associated with multiple peers.

112 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

Warning:

Using avalue of Ti meout lessthan the maximum time taken by the OS to establish an association (around 4.5
minutesif the default valuesfrom RFC 4960 are used), can result in inconsistent or incorrect return values. Thisis
especially relevant for associations sharing the same Socket (that is, source address and port), asthe controlling
process blocks until connect / * returns. connect _i ni t/ * provides an alternative without this limitation.

Theresult of connect / * isan#sct p_assoc_change{} event that contains, in particular, the new Association
ID:

#sctp _assoc_change{

state = atom(),
error = atom(),
outbound streams = integer(),
inbound streams = integer(),
assoc_id = assoc_1id()

The number of outbound and inbound streams can be set by givingan sct p_i ni t nsg optionto connect asin:

connect(Socket, Ip, Port>,
[{sctp_initmsg,#sctp initmsg{num ostreams=0utStreams,
max_instreams=MaxInStreams}}])

All optionsOpt are set on the socket before the association is attempted. If an option record has undefined field val ues,
the options record isfirst read from the socket for those values. In effect, Opt option records only define field values
to change before connecting.

Thereturned out bound_st r eans andi nbound_st r eans are the stream numbers on the socket. These can be
different from the requested values (Qut St r eans and Max| nSt r eans, respectively) if the peer requires lower
values.

st at e can have the following values:
conm_up

Association is successfully established. Thisindicates a successful completion of connect .
cant _assoc

The association cannot be established (connect / * failure).

Other states do not normaly occur in the output from connect/*. Rather, they can occur in
#sct p_assoc_change{} events received instead of data in r ecv/ * calls. All of them indicate losing the
association because of various error conditions, and are listed here for the sake of completeness:

comm | ost
restart
shut down_conp

Field er r or can provide more detailed diagnostics.
connect_init(Socket, Addr, Port, Opts) ->

ok | {error, inet:posix()}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 113

href

gen_sctp

Socket = sctp_socket ()

Addr = inet:ip_address() | inet:hostnane()
Port = inet: port_numnber()
Opts = [option()]

Sameasconnect _i nit (Socket, Addr, Port, Opts, infinity).

connect init(Socket, Addr, Port, Opts, Timeout) ->
ok | {error, inet:posix()}

Types:
Socket = sctp_socket ()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_nunber()
Opts = [option()]

Timeout = timeout()
Initiates a new association for socket Socket , with the peer (SCTP server socket) specified by Addr and Port .

The fundamental difference between this APl and connect / * isthat the return value is that of the underlying OS
connect (2) system call. If ok is returned, the result of the association establishment is received by the calling
processasan#sct p_assoc_change{} event. The calling process must be prepared to receive this, or poll for it
usingr ecv/ *, depending on the value of the active option.

The parameters are as described in connect / *, except the Ti neout value.
The timer associated with Ti meout only supervises | P resolution of Addr .

controlling process(Socket, Pid) -> ok | {error, Reason}

Types:
Socket = sctp_socket ()
Pid = pid()
Reason = closed | not owner | badarg | inet:posix()
Assigns a new controlling process Pid to Socket. Same implementation as

gen_udp: control I i ng_process/ 2.

eof(Socket, Assoc) -> ok | {error, Reason}
Types.

Socket = sctp_socket ()

Assoc = #sctp assoc change{}

Reason = term()

Gracefully terminates the association specified by Assoc, with flushing of all unsent data. The socket itself remains
open. Other associations opened on this socket are still valid. The socket can be used in new associations.

error_string(ErrorNumber) -> ok | string() | unknown error
Types:
ErrorNumber = integer()

Trandates an SCTP error number from, for example, #sct p_renote_error{} or #sctp_send_fail ed{}
into an explanatory string, or one of the atoms ok for no error or undef i ned for an unrecognized error.

114 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

listen(Socket, IsServer) -> ok | {error, Reason}
listen(Socket, Backlog) -> ok | {error, Reason}
Types:

Socket = sctp_socket ()

Backlog = integer()

Reason = term()

Sets up a socket to listen on the IP address and port number it is bound to.

For type segpacket , sockets (the default) | sSer ver must bet rue or f al se. In contrast to TCP, there is no
listening queue length in SCTP. If | sSer ver istr ue, the socket accepts new associations, that is, it becomes an
SCTP server socket.

For type st r eam sockets Backlog define the backlog queue length just likein TCP.

open() -> {ok, Socket} | {error, inet:posix()}
open(Port) -> {ok, Socket} | {error, inet:posix()}
open(0Opts) -> {ok, Socket} | {error, inet:posix()}
open(Port, Opts) -> {ok, Socket} | {error, inet:posix()}
Types:
Opts = [Opt]
Opt =
{ip, IP} |
{ifaddr, IP} |
i net:address_famly() |
{port, Port} |
{type, SockType} |
option()
IP = inet:ip_address() | any | loopback
Port = inet:port_nunber()
SockType = seqpacket | stream
Socket = sctp_socket ()
Creates an SCTP socket and binds it to the local addresses specified by al {ip, 1P} (or synonymously

{ifaddr, | P}) options (this feature is called SCTP multi-homing). The default | P and Port are any and O,
meaning bind to al local addresses on any free port.

Other options:
i net6
Sets up the socket for |Pv6.
i net
Sets up the socket for IPv4. Thisisthe default.

A default set of socket optionsisused. In particular, the socket is opened in binary and passive mode, with SockType
seqgpacket , and with reasonably large kernel and driver buffers.

peeloff(Socket, Assoc) -> {ok, NewSocket} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 115

gen_sctp

Socket = sctp_socket ()

Assoc = #sctp _assoc_change{} | assoc_id()
NewSocket = sctp_socket ()

Reason = term()

Branches off an existing association Assoc inasocket Socket of typeseqpacket (one-to-many style) into anew
socket NewSocket of typest r eam(one-to-one style).

The existing association argument Assoc can be either a#sct p_assoc_change{} record as returned from, for
example, r ecv/ *, connect / *, or from alistening socket in active mode. It can also be just the field assoc_i d
integer from such arecord.

recv(Socket) ->
{ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}

recv(Socket, Timeout) ->
{ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}

Types:
Socket = sctp_socket ()
Timeout = timeout()
FromIP = inet:ip_address()

FromPort = inet:port_nunber ()
AncData = [#sctp sndrcvinfo{}]
Data =

binary() |

string() |

#sctp _sndrcvinfo{} |
#sctp _assoc_change{} |
#sctp paddr change{} |
#sctp adaptation event{}
Reason =
i net: posix() |
#sctp send failed{} |
#sctp paddr change{} |
#sctp pdapi _event{} |
#sctp remote error{} |
#sctp shutdown event{}

Receives the Dat a message from any association of the socket. If the receive times out, {error, ti meout} is
returned. The default time-out isi nfi ni ty. From Pand Fr onPor t indicate the address of the sender.

AncDat a isalist of ancillary data items that can be received along with the main Dat a. This list can be empty,
or contain a single #sct p_sndr cvi nfo{} record if receiving of such ancillary data is enabled (see option
sct p_event s). It isenabled by default, as such ancillary data provides an easy way of determining the association
and stream over which the message is received. (An alternative way is to get the association ID from Fr o P and
Fr onPor t using socket optionsct p_get _peer _addr _i nf o, but thisdoes still not produce the stream number).

The Dat a received can beabi nary() oral i st () of bytes (integersin the range O through 255) depending on
the socket mode, or an SCTP event.

Possible SCTP events:

e #sctp_sndrcvinfo{}
e #sctp_assoc_change{}

116 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

#sctp_paddr_change{

addr = {ip_address(),port()},
state = atom(),

error = integer(),

assoc_id = assoc_id()

Indicates change of the status of the IP address of the peer specified by addr within association assoc_i d.
Possible values of st at e (mostly self-explanatory) include:

addr _unr eachabl e
addr _avail abl e
addr _renoved
addr _added

addr _nade_prim
addr _confirned

In case of an error (for example, addr _unr eachabl e), field er r or provides more diagnostics. In such
cases, event#sct p_paddr _change{} isautomatically convertedintoanerr or termreturnedbyr ecv. The
err or field value can be converted into astringusingerror _stri ng/ 1.

#sctp send failed{

flags = true | false,

error = integer(),

info = #sctp_sndrcvinfo{},
assoc_id = assoc_id()

data = binary()

The sender can receive this event if a send operation fails.
flags

A Boolean specifying if the data has been transmitted over the wire.
error

Provides extended diagnostics, useer ror _stri ng/ 1.
info

Theoriginal #sct p_sndr cvi nf o{} record used inthefailed send/ *.
dat a

The whole original data chunk attempted to be sent.
In the current implementation of the Erlang/SCTP binding, this event isinternally convertedintoaner r or term
returned by r ecv/ *.

#sctp adaptation event{
adaptation ind
assoc_id

integer(),
assoc_id()

Delivered when a peer sends an adaptation layer indication parameter (configured through option
sct p_adapt ati on_| ayer). Notice that with the current implementation of the Erlang/SCTP binding, this
event is disabled by default.

#sctp pdapi event{

Ericsson AB. All Rights Reserved.: Kernel | 117

gen_sctp

indication
assoc_id

sctp partial delivery aborted,
assoc_id()

A partial delivery failure. In the current implementation of the Erlang/SCTP binding, this event is internally
converted into an er r or term returned by r ecv/ *.

send(Socket, SndRcvInfo, Data) -> ok | {error, Reason}
Types.
Socket = sctp_socket ()
SndRcvInfo = #sctp sndrcvinfo{}
Data = binary() | iolist()
Reason = term()
Sends the Dat a message with all sending parameters from a#sct p_sndr cvi nf o{ } record. This way, the user
can specify the PPID (passed to the remote end) and context (passed to the local SCTP layer), which can be used, for

example, for error identification. However, such afine level of user control israrely required. The function send/ 4
is sufficient for most applications.

send(Socket, Assoc, Stream, Data) -> ok | {error, Reason}
Types:

Socket = sctp_socket ()

Assoc = #sctp _assoc_change{} | assoc_id()

Stream = integer()

Data = binary() | iolist()

Reason = term()
Sends a Dat a message over an existing association and specified stream.

SCTP Socket Options

The set of admissible SCTP socket optionsis by construction orthogonal to the sets of TCP, UDP, and generici net
options. Only options listed here are allowed for SCTP sockets. Options can be set on the socket using open/ 1, 2 or
i net: setopts/2,retrievedusingi net : get opt s/ 2. Options can be changed when calling connect / 4, 5.

{node, list|binary} orjustli st orbinary
Determines the type of datareturned fromrecv/ 1, 2.

{active, true|fal se|once|l N}

e |Iff al se (passive mode, the default), the caller must do an explicit r ecv call to retrieve the available data
from the socket.

o If true (full active mode), the pending data or events are sent to the owning process.

Notice that this can cause the message queue to overflow, as there is no way to throttle the sender in this
case (no flow contral).

e If once, only one message is automatically placed in the message queue, and after that the mode is
automatically reset to passive. This provides flow control and the possibility for the receiver to listen for its
incoming SCTP data interleaved with other inter-process messages.

e Ifactive isspecified as an integer N in the range -32768 to 32767 (inclusive), that number is added to
the socket's counting of data messages to be delivered to the controlling process. If the result of the addition
is negative, the count is set to 0. Once the count reaches 0, either through the delivery of messages or by

118 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

being explicitly set withi net : set opt s/ 2, the socket modeisautomatically reset to passive ({ act i ve,
f al se}). When a socket in this active mode transitions to passive mode, the message{ sct p_passi ve,
Socket } issent to the controlling process to notify it that if it wants to receive more data messages from
the socket, it must call i net : set opt s/ 2 to set the socket back into an active mode.

{tos, integer()}

Setsthe Type-Of-Servicefield on the | P datagramsthat are sent, to the specified value. Thiseffectively determines
aprioritization policy for the outbound packets. The acceptable values are system-dependent.

{priority, integer()}
A protocol-independent equivalent of t os above. Setting priority implies setting t os aswell.
{dontroute, true|false}

Defaultstof al se. If t r ue, the kernel does not send packets through any gateway, only sends them to directly
connected hosts.

{reuseaddr, true|false}

Defaultstof al se. If true, thelocal binding address{ | P, Por t } of the socket can be reused immediately. No
waiting in state CLOSE_WAI T is performed (can be required for high-throughput servers).

{sndbuf, integer()}

The size, in bytes, of the OS kernel send buffer for this socket. Sending errors would occur for datagrams larger
than val (sndbuf) . Setting this option also adjusts the size of the driver buffer (see buf f er above).

{recbuf, integer()}

Thesize, in bytes, of the OSkernel receive buffer for this socket. Sending errors would occur for datagrams larger
thanval (r echuf) . Setting this option also adjusts the size of the driver buffer (see buf f er above).

{sctp_nodul e, nodul e()}
Overrides which callback module is used. Defaultstoi net _sct p for IPv4andi net 6_sct p for IPv6.
{sctp_rtoinfo, #sctp_rtoinfo{}}

#sctp rtoinfo{

assoc_id = assoc_id(),
initial = integer(),
max = integer(),
min = integer()

Determines retransmission time-out parameters, in milliseconds, for the association(s) specified by assoc_i d.

assoc_i d = 0 (default) indicates the whole endpoint. See RFC 2960 and Sockets APl Extensionsfor SCTP
for the exact semantics of the field values.

{sctp_associ nfo, #sctp_assocparans{}}

#sctp_assocparams{

assoc_id = assoc_id(),
asocmaxrxt = integer(),
number peer destinations = integer(),
peer rwnd = integer(),
local rwnd = integer(),
cookie life = integer()

Ericsson AB. All Rights Reserved.: Kernel | 119

href
href

gen_sctp

Determines association parameters for the association(s) specified by assoc_i d.

assoc_id = 0 (default) indicates the whole endpoint. See Sockets APl Extensions for SCTP for the
discussion of their semantics. Rarely used.

{sctp_initnmsg, #sctp_initnmsg{}}

#sctp initmsg{

num ostreams = integer(),
max_instreams = integer(),
max_attempts = integer(),
max_init timeo = integer()

Determinesthe default parameters that this socket triesto negotiate with its peer while establishing an association
with it. Is to be set after open/ * but before the first connect / *. #sct p_i ni t msg{} can aso be used as
ancillary datawith the first call of send/ * to anew peer (when a new association is created).

num ost r eans
Number of outbound streams
max_i nstreans
Maximum number of inbound streams
max_attenpts
Maximum retransmissions while establishing an association
max_init_tinmeo
Time-out, in milliseconds, for establishing an association
{sctp_autocl ose, integer() >= 0}

Determines the time, in seconds, after which an idle association is automatically closed. 0 means that the
association is never automatically closed.

{sctp_nodel ay, true|false}

Turns on|off the Nagle algorithm for merging small packets into larger ones. This improves throughput at the
expense of latency.

{sctp_disabl e_fragnents, true|false}

If t r ue, induces an error on an attempt to send a message larger than the current PMTU size (which would
reguire fragmentation/reassembling). Notice that message fragmentation does not affect the logical atomicity of
its delivery; this option is provided for performance reasons only.

{sctp_i _want _mapped_v4_addr, true|false}
Turns on|off automatic mapping of IPv4 addressesinto |Pv6 ones (if the socket address family is AF_| NET6).
{sctp_naxseg, integer()}

Determines the maximum chunk size if message fragmentation is used. If 0, the chunk size is limited by the
Path MTU only.

{sctp_primary_addr, #sctp_prinm{}}

#sctp_prim{
assoc_id
addr

assoc_id(),
{IP, Port}

}
IP = ip address()

120 | Ericsson AB. All Rights Reserved.: Kernel

href

gen_sctp

Port = port number()

For the association specified by assoc_i d, {1 P, Port} must be one of the peer addresses. This option
determines that the specified addressis treated by the local SCTP stack as the primary address of the peer.

{sctp_set peer_prinmary_addr, #sctp_setpeerprin{}}

#sctp _setpeerprim{
assoc_id = assoc_id(),
addr = {IP, Port}

}
IP = ip _address()
Port = port number()

When set, informsthe peer touse{| P, Port} asthe primary address of thelocal endpoint for the association
specified by assoc_i d.

{sctp_adaptation_|l ayer, #sctp_setadaptation{}}

#sctp setadaptation{
adaptation _ind = integer()
}

When set, requests that the local endpoint uses the value specified by adapt ati on_i nd as the Adaptation
Indication parameter for establishing new associations. For details, see RFC 2960 and Sockets API Extenstions
for SCTP.

{sctp_peer_addr_parans, #sctp_paddrparans{}}

#sctp paddrparams{

assoc_id = assoc id(),
address = {IP, Port},
hbinterval = integer(),
pathmaxrxt = integer(),
pathmtu = integer(),
sackdelay = integer(),
flags = list()

}
IP = ip address()
Port = port number()

Determines various per-address parameters for the association specified by assoc_i d and the peer address
addr ess (the SCTP protocol supports multi-homing, so more than one address can correspond to a specified
association).

hbi nt er val
Heartbeat interval, in milliseconds
pat hmaxr xt

Maximum number of retransmissions before this address is considered unreachable (and an alternative
address is selected)

pat hnt u
Fixed Path MTU, if automatic discovery isdisabled (seef | ags below)

Ericsson AB. All Rights Reserved.: Kernel | 121

href
href
href

gen_sctp

sackdel ay

Delay, in milliseconds, for SAC messages (if the delay is enabled, seef | ags below)
flags

Thefollowing flags are available:

hb_enabl e
Enables heartbeat
hb_di sabl e
Disables heartbeat
hb_denand
Initiates heartbeat immediately
prmt ud_enabl e
Enables automatic Path MTU discovery
prt ud_di sabl e
Disables automatic Path MTU discovery
sackdel ay_enabl e
Enables SAC delay
sackdel ay_di sabl e
Disables SAC delay

{sctp_default_send_param #sctp_sndrcvinfo{}}

#sctp_sndrcvinfo{

stream = integer(),
ssn = integer(),
flags = list(),

ppid = integer(),
context = integer(),
timetolive = integer(),
tsn = integer(),
cumtsn = integer(),
assoc_id = assoc_id()

#sct p_sndrcvi nf o{} isused both in this socket option, and as ancillary data while sending or receiving
SCTP messages. When set as an option, it provides default values for subsequent send calls on the association
specified by assoc_i d.

assoc_i d = 0 (default) indicates the whole endpoint.
The following fields typically must be specified by the sender:
sinfo_stream
Stream number (0-base) within the association to send the messages through;
sinfo_fl ags
The following flags are recognised:

unor der ed

The message is to be sent unordered
addr _over

The address specified in send overwrites the primary peer address
abort

Aborts the current association without flushing any unsent data

122 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

eof

Gracefully shuts down the current association, with flushing of unsent data
Other fields are rarely used. For complete information, see RFC 2960 and Sockets API Extensions for

SCTP.

{sctp_events, #sctp_event_subscribe{}}

#sctp_event subscribe{

data io event = true
association event = true
address_event = true
send failure event = true
peer _error_event = true
shutdown event = true
partial delivery event = true
adaptation layer event = true

false,
false,
false,
false,
false,
false,
false,
false

This option determines which SCTP Events are to be received (through recv/*) aong with the data
The only exception is dat a_i o_event, which enables or disables receiving of #sct p_sndr cvi nf o{ }
ancillary data, not events. By default, all flags except adapt ati on_| ayer _event are enabled, athough
sctp_data_i o_event and associ ati on_event are used by the driver itself and not exported to the

user level.

{sctp_del ayed_ack_time, #sctp_assoc_val ue{}}

#sctp assoc value{
assoc_id
assoc_value

assoc_id(),
integer()

Rarely used. Determines the ACK time (specified by assoc_val ue, in milliseconds) for the specified
association or the whole endpoint if assoc_val ue =

{sctp_status, #sctp_status{}}

#sctp status{

assoc_id = assoc_id(),
state = atom(),
rwnd = integer(),
unackdata = integer(),
penddata = integer(),
instrms = integer(),
outstrms = integer(),
fragmentation point = integer(),
primary =

#sctp paddrinfo{}

0 (default).

Thisoptionisread-only. It determinesthe status of the SCTP association specified by assoc_i d. Thefollowing
are the possible values of st at e (the state designations are mostly self-explanatory):

sctp_state_enpty

Default. Means that no other state is active.

sctp_state cl osed

Ericsson AB. All Rights Reserved.: Kernel | 123

href
href
href

gen_sctp

sctp_state_cooki e _wait
sctp_state_cooki e_echoed
sctp_state_established

sct p_st at e_shut down_pendi ng
sctp_state_shutdown_sent
sctp_state_shutdown_recei ved
sctp_state_shutdown_ack_sent

Semantics of the other fields:

sstat_rwnd
Current receiver window size of the association
sstat _unackdat a
Number of unacked data chunks
sstat _penddat a
Number of data chunks pending receipt
sstat _instrmns
Number of inbound streams
sstat _outstrns
Number of outbound streams
sstat _fragment ati on_poi nt
Message size at which SCTP fragmentation occurs
sstat_primary
Information on the current primary peer address (see below for the format of #sct p_paddri nf o{})

{sctp_get peer_addr_info, #sctp_paddrinfo{}}

#sctp paddrinfo{

assoc_id = assoc id(),

address = {IP, Port},

state = inactive | active | unconfirmed,
cwnd = integer(),

srtt = integer(),

rto = integer(),

mtu = integer()

}
IP = ip address()
Port = port number()

This option is read-only. It determines the parameters specific to the peer address specified by addr ess within
the association specifiedby assoc_i d. Fieldaddr ess fmust be set by thecaller; al other fieldsarefilledinon
return. If assoc_i d = 0 (default), theaddr ess isautomatically translated into the corresponding association
ID. This option is rarely used. For the semantics of al fields, see RFC 2960 and Sockets API Extensions for
SCTP.

SCTP Examples
Example of an Erlang SCTP server that receives SCTP messages and prints them on the standard output:

-module(sctp server).
-export([server/0,server/1,server/2]).

-include lib("kernel/include/inet.hrl").
-include lib("kernel/include/inet sctp.hrl").

124 | Ericsson AB. All Rights Reserved.: Kernel

href
href
href

gen_sctp

server() ->
server(any, 2006).

server([Host,Port]) when is list(Host), is list(Port) ->
{ok, #hostent{h addr_list = [IP|_]}} = inet:gethostbyname(Host),
io:format("~w -> ~w~n", [Host, IP]),
server([IP, list to integer(Port)]).

server(IP, Port) when is tuple(IP) orelse IP == any orelse IP == loopback,
is_integer(Port) ->
{ok,S} = gen sctp:open(Port, [{recbuf,65536}, {ip,IP}]),
io:format("Listening on ~w:~w. ~w~n", [IP,Port,S]),
ok = gen_sctp:listen(S, true),
server_loop(S).

server_loop(S) ->
case gen sctp:recv(S) of
{error, Error} ->
io:format("SCTP RECV ERROR: ~p~n", [Error]);
Data ->
io:format("Received: ~p~n", [Data])
end,
server_loop(S).

Example of an Erlang SCTP client interacting with the above server. Notice that in this example the client creates
an association with the server with 5 outbound streams. Therefore, sending of " Test 0" over stream 0 succeeds,
but sending of " Test 5" over stream 5 fails. The client then abor t s the association, which results in that the
corresponding event is received on the server side.

-module(sctp client).

-export([client/0, client/1, client/2]).
-include lib("kernel/include/inet.hrl").
-include lib("kernel/include/inet sctp.hrl").

client() ->
client([localhost]).

client([Host]) ->
client(Host, 2006);

client([Host, Port]) when is list(Host), is list(Port) ->
client(Host,list to integer(Port)),
init:stop().

client(Host, Port) when is integer(Port) ->
{ok,S} = gen_sctp:open(),
{ok,Assoc} = gen sctp:connect
(S, Host, Port, [{sctp initmsg,#sctp initmsg{num ostreams=5}}1]),
io:format("Connection Successful, Assoc=~p~n", [Assoc]),

io:write(gen_sctp:send(S, Assoc, 0, <<"Test 0">>)),
io:nl(),

timer:sleep(10000),

io:write(gen_sctp:send(S, Assoc, 5, <<"Test 5">>)),
io:nl(),

timer:sleep(10000),

io:write(gen sctp:abort(S, Assoc)),

io:nl(),

timer:sleep(1000),

Ericsson AB. All Rights Reserved.: Kernel | 125

gen_sctp

gen_sctp:close(S).

A simple Erlang SCTP client that usestheconnect _i ni t API:

-module(ex3).

-export([client/4]).
-include lib("kernel/include/inet.hrl").
-include lib("kernel/include/inet sctp.hrl").

client(Peerl, Portl, Peer2, Port2)
when is tuple(Peerl), is integer(Portl), is tuple(Peer2), is integer(Port2) ->

{ok,S} = gen_sctp:open(),
SctpInitMsgOpt = {sctp initmsg,#sctp initmsg{num ostreams=5}},
ActiveOpt = {active, true},
Opts = [SctpInitMsgOpt, ActiveOpt],
ok = gen_sctp:connect(S, Peerl, Portl, Opts),
ok = gen _sctp:connect(S, Peer2, Port2, Opts),
io:format("Connections initiated~n", [1]),
client loop(S, Peerl, Portl, undefined, Peer2, Port2, undefined).

client loop(S, Peerl, Portl, AssocIdl, Peer2, Port2, AssocId2) ->

receive
{sctp, S, Peerl, Portl, { Anc, SAC}}
when is record(SAC, sctp assoc change), AssocIdl == undefined ->

io:format("Association 1 connect result: ~p. AssocId: ~p~n",
[SAC#sctp _assoc_change.state,
SAC#sctp assoc change.assoc_idl]),
client loop(S, Peerl, Portl, SAC#sctp assoc change.assoc id,
Peer2, Port2, AssocId2);

{sctp, S, Peer2, Port2, { Anc, SAC}}
when is record(SAC, sctp assoc change), AssocId2 == undefined ->
io:format("Association 2 connect result: ~p. AssocId: ~p~n",
[SAC#sctp _assoc change.state, SAC#sctp assoc change.assoc id]),
client loop(S, Peerl, Portl, AssocIdl, Peer2, Port2,
SAC#sctp assoc_change.assoc_id);

{sctp, S, Peerl, Portl, Data} ->
io:format("Association 1: received ~p~n", [Datal),
client loop(S, Peerl, Portl, AssocIdl,

Peer2, Port2, Assocld2);

{sctp, S, Peer2, Port2, Data} ->
io:format("Association 2: received ~p~n", [Datal),
client loop(S, Peerl, Portl, AssocIdl,

Peer2, Port2, Assocld2);

Other ->
io:format("Other ~p~n", [Other]),
client loop(S, Peerl, Portl, AssocIdl,
Peer2, Port2, Assocld2)

after 5000 ->

ok
end.

See Also

gen_tcp(3), gen_udp(3), inet(3), RFC 2960 (Stream Control Transmission Protocol), Sockets API
Extensionsfor SCTP

126 | Ericsson AB. All Rights Reserved.: Kernel

href
href
href

gen_tcp

gen_tcp

Erlang module

This module provides functions for communicating with sockets using the TCP/IP protocol.

The following code fragment is a simple example of aclient connecting to aserver at port 5678, transferring abinary,

and closing the connection:

client() ->
SomeHostInNet = "localhost", % to make it runnable on one machine
{ok, Sock} = gen tcp:connect(SomeHostInNet, 5678,
[binary, {packet, 0}1),
gen tcp:send(Sock, "Some Data"),
gen_tcp:close(Sock).

ok
ok

At the other end, a server islistening on port 5678, accepts the connection, and receives the binary:

server() ->
{ok, LSock} = gen tcp:listen(5678, [binary, {packet, 0},
{active, false}]),
{ok, Sock} = gen tcp:accept(LSock),
{ok, Bin} = do_ recv(Sock, [1),
ok = gen_tcp:close(Sock),
Bin.

do recv(Sock, Bs) ->
case gen tcp:recv(Sock, 0) of
{ok, B} ->
do_recv(Sock, [Bs, Bl);
{error, closed} ->
{ok, list to binary(Bs)}
end.

For more examples, see section Examples.

Data Types

option() =
{active, true | false | once | -32768..32767} |
{buffer, integer() >= 0} |
{delay send, boolean()} |
{deliver, port | term} |
{dontroute, boolean()} |
{exit on close, boolean()} |
{header, integer() >= 0} |
{high msgq watermark, integer() >= 1} |
{high watermark, integer() >= 0} |
{keepalive, boolean()} |
{linger, {boolean(), integer() >= 0}} |
{low msgq watermark, integer() >= 1} |
{low watermark, integer() >= 0} |
{mode, list | binary} |

Ericsson AB. All Rights Reserved

.- Kernel | 127

gen_tcp

list |
binary |
{nodelay, boolean()} |
{packet,

0|

1|

2|

4|

raw |

sunrm |

asnl |

cdr |

fcgi |
line |
tpkt |
http |
http _bin |

httph _bin} |
{packet _size, integer() >= 0} |
{priority, integer() >= 0} |

{raw,
Protocol :: integer() >= 0,
OptionNum :: integer() >= 0,

ValueBin :: binary()} |
{recbuf, integer() >= 0} |
{reuseaddr, boolean()} |
{send timeout, integer() >= | infinity} |
{send timeout close, boolean()} |
{show_econnreset, boolean()} |
{sndbuf, integer() >= 0} |
{tos, integer() >= 0} |
{ipv6 v6only, boolean()}

option name() =
active |
buffer |
delay send |
deliver |
dontroute |
exit on close |
header |
high msgq watermark |
high watermark |
keepalive |
linger |
low msgq watermark |
low watermark |
mode |
nodelay |
packet |
packet size |
priority |

128 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

{raw,
Protocol :: integer() >= 0,
OptionNum :: integer() >= 0,
ValueSpec ::
(ValueSize :: integer() >= 0) | (ValueBin :: binary())} |
recbuf |
reuseaddr |

send timeout |
send timeout close |
show econnreset |
sndbuf |
tos |
ipv6e _veonly

connect option() =
{ip, inet:socket_address()} |
{fd, Fd :: integer() >= 0} |
{ifaddr, inet:socket_address()} |
i net:address_famly() |
{port, inet:port_nunber()} |
{tcp_module, module()} |
option()

listen option() =
{ip, inet:socket_address()} |
{fd, Fd :: integer() >= 0} |
{ifaddr, inet:socket_address()} |
i net:address_famly() |
{port, inet:port_nunber()} |
{backlog, B :: integer() >= 0} |
{tcp_module, module()} |
option()

socket ()

Asreturned by accept/ 1, 2 andconnect/ 3, 4.

Exports

accept(ListenSocket) -> {ok, Socket} | {error, Reason}
accept(ListenSocket, Timeout) -> {ok, Socket} | {error, Reason}
Types:

ListenSocket = socket ()

Returned by | i st en/ 2.

Timeout = timeout()

Socket = socket ()

Reason = closed | timeout | system limit | inet: posi x()
Accepts an incoming connection request on a listening socket. Socket must be a socket returned from | i st en/ 2.
Ti meout specifiesatime-out value in milliseconds. Defaultstoi nfi nity.

Returns:

« {ok, Socket} if aconnectionis established
e {error, closed} ifListenSocket isclosed

Ericsson AB. All Rights Reserved.: Kernel | 129

gen_tcp

« {error, tinmeout} if noconnection isestablished within the specified time
e {error, systemlinit} ifal avalableportsinthe Erlang emulator arein use
A POSIX error value if something else goeswrong, seei net (3) for possible error values

Packets can be sent to the returned socket Socket using send/ 2. Packets sent from the peer are delivered as
messages (unless{ acti ve, fal se} isspecifiedin the option list for the listening socket, in which case packets
areretrieved by callingr ecv/ 2):

{tcp, Socket, Data}

Note:

The accept call does not have to be issued from the socket owner process. Using version 5.5.3 and higher of
the emulator, multiple simultaneous accept calls can be issued from different processes, which allows for a pool
of acceptor processes handling incoming connections.

close(Socket) -> ok

Types:
Socket = socket ()
Closes a TCP socket.

connect(Address, Port, Options) -> {ok, Socket} | {error, Reason}

connect (Address, Port, Options, Timeout) ->
{ok, Socket} | {error, Reason}

Types:
Address = inet:socket_address() | inet:hostnanme()
Port = inet: port_nunber()
Options = [connect _option()]
Timeout = timeout()
Socket = socket ()
Reason = inet: posi x()

Connectsto aserver on TCP port Por t onthehost with IPaddressAddr ess. Argument Addr ess can beahostname
or an IP address.

The following options are available:
{ip, Address}
If the host has many network interfaces, this option specifies which one to use.
{ifaddr, Address}
Sameas{i p, Address}. If thehost has many network interfaces, this option specifies which one to use.
{fd, integer() >= 0}

If a socket has somehow been connected without using gen_t cp, use this option to pass the file descriptor for
it. If {i p, Address} andlor {port, port_number ()} iscombined with this option, thef d is bound

130 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

to the specified interface and port before connecting. If these options are not specified, it is assumed that the f d
isaready bound appropriately.

i net

Sets up the socket for 1Pv4.
inet6

Sets up the socket for |Pv6.
| ocal

Sets up aUnix Domain Socket. See i net : | ocal _addr ess()
{port, Port}

Specifies which local port number to use.
{tcp_nodul e, nodul e()}

Overrides which callback module is used. Defaultstoi net _t cp for IPv4andi net 6_t cp for IPv6.
Opt

Seei net : set opt s/ 2.

Packets can be sent to the returned socket Socket using send/ 2. Packets sent from the peer are delivered as
messages:

{tcp, Socket, Data}

If thesocketisin{acti ve, N} mode(seei net: set opt s/ 2 for details) and its message counter dropsto 0, the
following message is delivered to indicate that the socket has transitioned to passive ({ act i ve, fal se}) mode:

{tcp passive, Socket}

If the socket is closed, the following message is delivered:

{tcp closed, Socket}

If an error occurs on the socket, the following message is delivered (unless{ act i ve, fal se} isspecifiedinthe
option list for the socket, in which case packets are retrieved by calling r ecv/ 2):

{tcp _error, Socket, Reason}

The optional Ti meout parameter specifies atime-out in milliseconds. Defaultstoi nfinity.

Note:

The default values for options specified to connect can be affected by the Kernel configuration parameter
i net _default _connect opti ons. For details, seei net (3) .

Ericsson AB. All Rights Reserved.: Kernel | 131

gen_tcp

controlling process(Socket, Pid) -> ok | {error, Reason}

Types:
Socket = socket ()
Pid = pid()
Reason = closed | not owner | badarg | inet: posix()

Assignsanew controlling processPi d to Socket . The controlling processisthe process that receives messagesfrom
the socket. If called by any other process than the current controlling process, { error, not _owner} isreturned.
If the processidentified by Pi d isnot an existing local pid, { error, badar g} isreturned.{error, badar g}
may also be returned in some cases when Socket is closed during the execution of this function.

If the socket is set in active mode, this function will transfer any messages in the mailbox of the caller to the new
controlling process. If any other processisinteracting with the socket whilethe transfer is happening, the transfer may
not work correctly and messages may remain in the caller's mailbox. For instance changing the sockets active mode
before the transfere is complete may cause this.

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}
Types:
Port = inet: port_nunber()
Options = [listen_option()]
ListenSocket = socket ()
Reason = system limit | inet: posix()
Sets up a socket to listen on port Por t on the local host.
If Port == 0, theunderlying OS assigns an available port number, usei net : port/ 1 toretrieveit.
The following options are available:
list
Received Packet isdelivered asalist.
bi nary
Received Packet isdelivered as abinary.
{backl og, B}

B isaninteger >= 0. The backlog value defines the maximum length that the queue of pending connections can
grow to. Defaultsto 5.

{ip, Address}
If the host has many network interfaces, this option specifies which one to listen on.
{port, Port}
Specifies which local port number to use.
{fd, Fd}
If asocket has somehow been connected without using gen_t cp, usethisoption to passthe file descriptor for it.
{ifaddr, Address}
Sameas{i p, Address}. If thehost has many network interfaces, this option specifies which one to use.
i net6
Sets up the socket for 1Pv6.

132 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

i net
Sets up the socket for 1Pv4.
{tcp_nodul e, nodul e()}
Overrides which callback module is used. Defaultstoi net _t cp for IPv4andi net 6_t cp for IPv6.
Opt
Seei net : set opt s/ 2.
The returned socket Li st enSocket canonly beusedin calstoaccept/ 1, 2.

Note:

The default values for options specified to | i st en can be affected by the Kernel configuration parameter
i net_default |isten_options.Fordetails, seei net (3) .

recv(Socket, Length) -> {ok, Packet} | {error, Reason}
recv(Socket, Length, Timeout) -> {ok, Packet} | {error, Reason}

Types:
Socket = socket ()
Length = integer() >= 0

Timeout = timeout()
Packet = string() | binary() | HttpPacket
Reason = closed | inet: posix()
HttpPacket = term()
See the description of Ht t pPacket inerl ang: decode_packet/ 3 in ERTS.
Receives a packet from a socket in passive mode. A closed socket isindicated by return value{ er r or, cl osed}.

Argument Lengt h is only meaningful when the socket is in r aw mode and denotes the number of bytes to read.
If Lengt h is 0, al available bytes are returned. If Lengt h > 0, exactly Lengt h bytes are returned, or an error;
possibly discarding less than Lengt h bytes of data when the socket is closed from the other side.

The optional Ti meout parameter specifies atime-out in milliseconds. Defaultstoi nfinity.

send(Socket, Packet) -> ok | {error, Reason}

Types.

Socket = socket ()

Packet = iodata()

Reason = closed | inet: posix()
Sends a packet on a socket.

Thereisno send call with atime-out option, use socket optionsend_t i neout if time-outsare desired. See section
Examples.

shutdown (Socket, How) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 133

gen_tcp

Socket = socket ()
How = read | write | read write
Reason = inet: posi x()

Closes a socket in one or two directions.
How == wr it e means closing the socket for writing, reading from it is still possible.

If How == r ead or there is no outgoing data buffered in the Socket port, the socket is shut down immediately
and any error encountered isreturned in Reason.

If there is data buffered in the socket port, the attempt to shutdown the socket is postponed until that datais written to
the kernel socket send buffer. If any errors are encountered, the socket isclosedand{ error, cl osed} isreturned
onthenextrecv/ 2 or send/ 2.

Option{exi t _on_cl ose, fal se} isuseful if the peer has done a shutdown on the write side.

Examples

The following example illustrates use of option { act i ve, once} and multiple accepts by implementing a server
as a number of worker processes doing accept on a single listening socket. Function st ar t / 2 takes the number of
worker processes and the port number on which to listen for incoming connections. If LPor t is specified as 0, an
ephemeral port number is used, which iswhy the start function returns the actual port number allocated:

start (Num,LPort) ->
case gen tcp:listen(LPort, [{active, false},{packet,2}]) of
{ok, ListenSock} ->
start servers(Num,ListenSock),
{ok, Port} = inet:port(ListenSock),
Port;
{error,Reason} ->
{error,Reason}
end.

start servers(0,) ->
ok;

start servers(Num,LS) ->
spawn (?MODULE, server, [LS]),
start servers(Num-1,LS).

server(LS) ->
case gen _tcp:accept(LS) of

{ok,S} ->
loop(S),
server(LS);
Other ->
io:format("accept returned ~w - goodbye!~n",[Other]),
ok
end.
loop(S) ->
inet:setopts(S, [{active,once}]),
receive

{tcp,S,Data} ->
Answer = process(Data), % Not implemented in this example
gen_tcp:send(S,Answer),
loop(S);
{tcp closed,S} ->
io:format("Socket ~w closed [~w]~n",[S,self()]),
ok

134 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

end.

Example of asimple client:

client(PortNo,Message) ->
{ok,Sock} = gen tcp:connect("localhost",PortNo, [{active, false},
{packet,2}1),
gen_tcp:send(Sock,Message),
A = gen_tcp:recv(Sock,0),
gen_tcp:close(Sock),
A.

The send call does not accept a time-out option because time-outs on send is handled through socket option
send_t i meout . The behavior of a send operation with no receiver is mainly defined by the underlying TCP stack
and the network infrastructure. To write code that handles a hanging receiver that can eventually cause the sender to

hang on asend do like the following.

Consider a process that receives data from a client process to be forwarded to a server on the network. The process
is connected to the server through TCP/IP and does not get any acknowledge for each message it sends, but has to
rely on the send time-out option to detect that the other end is unresponsive. Option send_t i neout can be used

when connecting:

{ok,Sock} = gen tcp:connect(HostAddress, Port,
[{active, false},
{send timeout, 5000},
{packet,2}1),
loop(Sock), % See below

In the loop where requests are handled, send time-outs can now be detected:

loop(Sock) ->
receive
{Client, send data, Binary} ->
case gen tcp:send(Sock, [Binary]) of
{error, timeout} ->
io:format("Send timeout, closing!~n",
[1),
handle send timeout(), % Not implemented here
Client ! {self(),{error sending, timeout}},
%% Usually, it's a good idea to give up in case of a
%% send timeout, as you never know how much actually
%% reached the server, maybe only a packet header?!
gen_tcp:close(Sock);
{error, OtherSendError} ->
io:format("Some other error on socket (~p), closing",
[0therSendError]),
Client ! {self(),{error sending, OtherSendError}},
gen_tcp:close(Sock);

ok ->
Client ! {self(), data sent},
loop(Sock)

end
end.

Ericsson AB. All Rights Reserved

.. Kernel | 135

gen_tcp

Usually it suffices to detect time-outs on receive, as most protocols include some sort of acknowledgment from the
server, but if the protocol is strictly one way, option send_t i meout comesin handy.

136 | Ericsson AB. All Rights Reserved.: Kernel

gen_udp

gen_udp

Erlang module

This module provides functions for communicating with sockets using the UDP protocol.

Data Types

option() =
{active, true | false | once | -32768..32767} |
{add_membership, {inet:ip_address(), inet:ip_address()}} |
{broadcast, boolean()} |
{buffer, integer() >= 0} |
{deliver, port | term} |
{dontroute, boolean()} |
{drop_membership, {inet:ip_address(), inet:ip_address()}} |
{header, integer() >= 0} |
{high msgq watermark, integer() >= 1} |
{low _msgq watermark, integer() >= 1} |
{mode, list | binary} |
list |
binary |
{multicast if, inet:ip_address()} |
{multicast loop, boolean()} |
{multicast ttl, integer() >= 0} |
{priority, integer() >= 0} |

{raw,
Protocol :: integer() >= 0,
OptionNum :: integer() >= 0,

ValueBin :: binary()} |
{read packets, integer() >= 0} |
{recbuf, integer() >= 0} |
{reuseaddr, boolean()} |
{sndbuf, integer() >= 0} |
{tos, integer() >= 0} |
{ipv6_v6only, boolean()}

option name() =
active |
broadcast |
buffer |
deliver |
dontroute |
header |
high msgq watermark |
low_msgq watermark |
mode |
multicast if |
multicast loop |
multicast ttl |
priority |
{raw,

Ericsson AB. All Rights Reserved.: Kernel | 137

gen_udp

Protocol :: integer() >= 0,
OptionNum :: integer() >= 0,
ValueSpec ::

(ValueSize :: integer() >= 0) | (ValueBin :: binary())} |
read packets |
recbuf |
reuseaddr |
sndbuf |
tos |
ipv6 _veonly
socket()

Asreturned by open/ 1, 2.

Exports

close(Socket) -> ok

Types:
Socket = socket ()
Closes a UDP socket.

controlling process(Socket, Pid) -> ok | {error, Reason}

Types:
Socket = socket ()
Pid = pid()
Reason = closed | not owner | badarg | inet: posix()

Assignsanew controlling processPi d to Socket . The controlling processisthe processthat receives messagesfrom
the socket. If called by any other process than the current controlling process, { error, not _owner} isreturned.
If the processidentified by Pi d isnot an existing local pid,{ er r or, badar g} isreturned.{error, badar g}
may also be returned in some cases when Socket is closed during the execution of this function.

open(Port) -> {ok, Socket} | {error, Reason}
open(Port, Opts) -> {ok, Socket} | {error, Reason}

Types:

Port = inet: port_numnber()

Opts = [Option]

Option =
{ip, inet:socket_address()} |
{fd, integer() >= 0} |
{ifaddr, inet:socket_address()} |
i net:address_famly() |
{port, inet:port_nunber()} |
option()

Socket = socket ()

Reason = inet: posi x()

Associates a UDP port number (Por t) with the calling process.
The following options are available:

138 | Ericsson AB. All Rights Reserved.: Kernel

gen_udp

list
Received Packet isdelivered asalist.
bi nary
Received Packet isdelivered as abinary.
{ip, Address}
If the host has many network interfaces, this option specifies which one to use.
{ifaddr, Address}
Sameas{i p, Add