
Stealth V.4.01.00

Frank B. Brokken

Center for Information Te
hnology, University of Groningen

2005-2015

Contents

1 Introduction 3

1.1 What’s new in Stealth V.4.01.00 . 5

2 Installation 6

2.1 Compiling and installing Stealth . 6

3 Granting access 8

3.0.1 The monitor’s user: creating an ssh-key . 8

3.0.2 The client’s account: accepting ssh from the monitor’s user 9

3.0.3 Logging into the account@client account . 9

3.0.4 Using the proper shell . 9

4 The ‘policy’ file 11

4.1 DEFINE directives . 11

4.2 USE directives . 12

4.3 Commands . 15

4.3.1 LABEL commands . 15

4.3.2 LOCAL commands . 15

4.3.3 REMOTE commands . 17

4.3.4 Preventing Controller Denial of Service (–max-size) 20

5 Running ‘stealth’ 22

5.1 Installing ‘stealth’ . 22

5.2 Stealth command-line and policy file options . 23

5.2.1 Rsyslog filtering . 25

5.3 Construct one or more policy files . 26

1

5.3.1 DEFINE directives . 26

5.3.2 USE directives . 26

5.3.3 Commands . 27

5.3.4 The complete ‘policy’ file . 29

5.4 Running ‘stealth’ for the first time . 29

5.4.1 The mailed report . 30

5.4.2 Files under /root/stealth/client . 31

5.5 Subsequent ‘stealth’ runs . 32

5.5.1 All files unaltered . 32

5.5.2 Modifications occurred . 33

5.5.3 Failing LOCAL commands . 34

5.5.4 Skipping (some) integrity checks . 35

5.6 Automating repeated ‘stealth’ runs . 35

5.7 Report File Rotation . 36

5.7.1 Status file cleanup . 37

5.7.2 Using ‘logrotate’ to control report- and status files 39

6 Kick-starting ‘stealth’ 41

7 Usage info 43

8 Errormessages 45

2

Chapter 1

Introdu
tion

Welcome to stealth. The program stealth implements a file integrity scanner. The acronym stealth can
be expanded to

SSH-based Trust Enfor
ement A
quired through a Lo
ally

Trusted Host.

This expansion contains the following key terms:

• SSH-based: The file integrity scan is (usually) performed over an ssh-connection. Usually the
computer being scanned (called the client) and the computer initiating the scan (called the monitor)
are different computers.

• The client should accept incoming ssh-connections from the monitor. The monitor doesn’t have to
(and shouldn’t, probably).

• Trust Enforcement: following the scan, ‘trust’ is enforced in the client, due to the integrity of its
files.

• Locally Trusted Host: the client apparently trusts the monitor to use an ssh-connection to per-
form commands on it. The client therefore locally trusts the monitor. Hence, locally trusted host.

stealth is based on an idea by Hans Gankema and Kees Visser, both at the Center for Information
Technology of the University of Groningen.

stealth’s main task is to perform file integrity tests. However, the testing will leave virtually no sediments
on the tested computer. Therefore, stealth has stealthy characteristics. I consider this an important
security improving feature of stealth.

The monitor itself only needs two kinds of outgoing services: ssh(1) to reach its clients, and some mail
transport agent (e.g., sendmail(1)) to forward its outgoing mail to some mail-hub.

Here is what happens when stealth is run:

• First, the policy file is read. For each client a policy file is defined, specifying the actions to be
performed, and specifying the values of several variables used by stealth.

3

• If the command-line option –daemon <uds> is specified, stealth runs as a daemon process, using
the Unix Domain Socket (<uds>) for communication with stealth processes running in IPC mode.

If access to the Unix Domain Socket defined by Stealth running in daemon mode should be restricted,
it can be defined in a directory with is only accessible to the user running Stealth (this will often be
the root-user).

When running in daemon mode, –repeat <seconds> may be specified to rerun the integrity scan
every <seconds> seconds. If an integrity scan is being performed when, according to the repeat
interval the next integrity scan is due, then the current scan is first completed. Once completed, the
next integrity scan will be performed after seconds seconds.

• Next, the monitor opens a command shell on the client using ssh(1), and a command shell on the
monitor computer itself using sh(1).

• Once the command shells are available, commands defined in the policy file are executed in their
order of appearance. Examples are given below. Normally, return values of the programs are tested.
When return values are to be tested stealth terminates when a non-zero return value is sensed. If
this happens, a message stating the reason why stealth terminated is written to the report file (and
into the mail sent by stealth). In some cases (e.g., when the report file could not be written), the
message is written to the standard error stream.

• Very often integrity tests can be controlled using find(1), calling programs like ls(1), sha1sum(1) or
its own -printf method to produce file-integrity related statistics. Most of these programs write file
names at the end of generated lines. This characteristic is used by one of stealth’s internal routines
to detect changes in the generated output. Such changes could indicate some harmful intent, like
an installed root-kit.

• When changes are detected, they are logged in a report file, to which information is always appended.
Stealth never reduces the report file’s size or rewrites its contents. When information is added to
the report file (beyond a plain time stamp) the newly added information is e-mailed to a configurable
e-mail address for further (human) processing. Usually the e-mail is sent to the systems manager of
the tested client. Stealth follows the ‘dark cockpit’ approach in the sense that no mail is sent when
no changes were detected.

• Report and other log-files may safely be rotated between a pair of –suspend and –resume commands
(see below at the section 5.7).

Instead of running in daemon mode, stealth may also run in ‘foreground’ mode. In foreground mode the
option –daemon is not specified. When running in foreground mode stealth either performs one integrity
scan (and terminates) or, if the –repeat option has been specified, it repeatedly performs integrity scans,
at intervals determined by the –repeat and –random-interval options. When –repeat is specified with
stealth running in foreground mode a prompt is shown (i.e., ‘? ’) with stealth terminating after
pressing the Enter-key.

Alternatively, stealth may run in ‘inter process communication’ mode (IPC mode). IPC mode is charac-
terized by using one of the command-line options –reload, –rerun, –suspend, –resume or –terminate.
In IPC-mode stealth communicates with an existing stealth daemon, using the Unix Domain Socket de-
fined by the stealth daemon. These options require but one argument: the location of the Unix Domain
Socket defined by a running stealth daemon.

• When started using the –reload <uds> command-line option, the stealth daemon that created the
Unix Domain Socket reloads its policy file (and skip-file), immediately followed by another integrity
scan;

• When started using the –rerun <uds> command-line option, the stealth daemon that created the
Unix Domain Socket performs another integrity scan;

4

• When started using the –terminate <usd> command-line option, the stealth daemon that created
the Unix Domain Socket terminates.

The options –suspend and –resume (see section 5.7) were implemented to allow safe rotations of stealth’s
log-files.

1.1 What's new in Stealth V.4.01.00

With 4.00.00:

• Version 3.00.00 was only short-lived. The inter-process communication using signals never ran
smoothly. Version 4.00.00 re-implements stealth’s inter-process communication using Unix Domain
Sockets.

• Previously required absolute file paths are no longer required. When relative file paths are used with
the stealth daemon or with stealth performing an integrity scan as foreground process they are
interpreted relatively to the current working directory. Relative file locations for options specified
in the second section of the policy file are interpreted relative to the location of the policy file, and
relative path specifications used in the first section of the policy file are interpreted relative to the
policy file’s USE BASE.

• The README.flow file is provided with several separately provided illustrative images in the
distribution-provided directory documentation/images.

• Specifications for the logrotate specifications should use ’copytruncate’ and ’sharedscripts’ (see
section 5.7 for an example)

• Examples in the manual still use sha1sum when checking hash values. Stronger hash functions (like
sha256sum) might be preferred in practice. When updating existing policy files to use sha256sum

rather than sha1sum realize that sha256sum’s hash values are longer than sha1sum’s hash values,
and that therefore log files obtained when sha1sum was used are incompatible with log files ob-
tained when sha256sum was used. In practice this means that new log files need to be generated,
disregarding any previously geneerated log files.

5

Chapter 2

Installation

This chapter describes stealth’s compilation and installation.

2.1 Compiling and installing Stealth

After downloading the stealth archive, it should be unpacked. The name of the archive is of the form
stealth-4.01.00.tar.gz, where 4.01.00 is a version number. Below, 4.01.00 should be altered into
the version of the archive that is actually used.

Required, non-standard software, for compiling stealth is summarized in the file required, which is
included in the source file distribution. Currently, its contents are:

This file lists non-standard software only. Thus, standard utilities like cp,

mv, sed, etc, etc, are not explicitly mentioned. Neither is the gcc compiler

explicitly mentioned, but a fairly recent one is assumed.

Required software for building Stealth 4.00.00

--

libbobcat-dev (>= 3.25.01),

To use the provided build-script:

icmake (>= 7.22.00)

To construct the manual and map-page:

yodl (>= 3.05.0)

To construct the manual:

texlive-latex-base,

texlive-generic-recommended,

texlive-latex-recommended,

texlive-fonts-recommended,

cm-super-minimal,

6

ghostscript

• Stealth compilation is controlled by icmake(1). The program maintenance utility icmake(1)
can be obtained at http://icmake.sourceforge.net/, and it is also available in several Linux
distributions (e.g., Debian, Ubuntu);

• Determine a directory where the files in stealth’s archive ashould be stored. E.g., if the files in the
archive should be stored under /tmp (and assuming the archive itself is stored in /tmp as well) then
do:

cd /tmp

tar xzf stealth-4.01.00.tar.gz

This creates a subdirectory stealth containing stealth’s sources;

• Change-dir to that directory:

chdir stealth

• Check the contents of the files INSTALL.im and icmconf, and verify that all #defines match your
computer’s file system and software.

When compiling stealth, the bobcat1 header files must be available. When stealth is
run it is dynamically linked against the bobcat library. Bobcat can be downloaded from
http://sourceforge.net/projects/bobcat/ (and follow its installation instructions). Alterna-
tively, bobcat may be available in your distribution, (e.g., Debian or Ubuntu). Make sure to install
both the run-time (bobcat_...) and the development (bobcat-dev_...) versions.

• Execute the command

./build program strip

This command by default creates the program ./tmp/bin/binary.

• To install stealth and its documentation, several commands are available:

./build install program [path] - installs the program as ‘path’

(by default as ‘/usr/bin/stealth’)

./build install man [base] - install the man pages below ‘base’

(by default below ‘/usr/share/man/man1’)

./build install manual [base]- install the manual below ‘base’

(by default below

‘/usr/share/doc/stealth-doc/manual’)

./build install std [base] - install standard docs below ‘base’

(by default below ‘/usr/share/doc/stealth’)

./build install extra [base] - install extra docs below ‘base’

(by default below

‘/usr/share/doc/stealth-doc’)

1

http://bob
at.sour
eforge.net/

7

Chapter 3

Granting a

ess

Access to clients should be granted using the ssh protocol.

Clients must allow the monitor to connect using ssh. Stealth connects to its clients using ssh certificates,
after the monitor’s public SSH-key has been transferred to the clients.

3.0.1 The monitor's user:
reating an ssh-key

The monitor’s user calling stealth to scan the client must first generate an ssh-keypair:

ssh-keygen -t rsa

By default this generates a public/private ssh key-pair in the directory .ssh in the user’s home directory.
The program asks for a passphrase. A passphrase can be defined (in which case it must be proviced when
stealth is started) or, if the security if the monitor is sufficiently guaranteed, it can remain empty. To
generate an ssh-key without passphrase simply press Enter in response to the question

Enter passphrase (empty for no passphrase):

(a confirmation is required: just press Enter again).

Ssh-keygen then returns a key fingerprint, e.g.,

03:96:49:63:8a:64:33:45:79:ab:ca:de:c8:c8:4f:e9 user@monitor

which may be saved for future reference.

In the user’s .ssh directory the files id_rsa and id_rsa.pub are now created, which completes the
preparations at the monitor.

If, instead of running stealth in deamon mode it is preferred to let stealth perform single, but automated
integrity scans, then new ssh(1) connections may be difficult to establish if the used ssh-key is passphrase-
protected. To implement this scenario (i.e., automated integrity scans using passphrase protected ssh-keys)
the program ssh-cron(1) can profitably be used.

8

3.0.2 The
lient's a

ount: a

epting ssh from the monitor's user

Next, at the client’s account where stealth’s ssh command connects to (see also the USE SSH specifica-
tion in section 4.2) ssh-access must be granted to the monitor’s user. To do so, the monitor user’s file
~/.ssh/id_rsa.pub is added to the client account user’s file ~/.ssh/authorized_keys:

transfer user@monitor’s file id_rsa.pub to the client’s /tmp

directory. Then do:

cat /tmp/id_rsa.pub >> /home/account/.ssh/authorized_keys

This allows the user at the monitor to login at the account at the client without specifying the client
account’s password (of course, if the ssh-key is passphrase protected that passphrase must still be provided
at the monitor when starting stealth).

3.0.3 Logging into the a

ount�
lient a

ount

When user@monitor now issues, for the first time, the command

ssh account@monitor

Ssh responds like this:

The authenticity of host ’monitor (xxx.yyy.aaa.bbb)’ can’t be

established.

RSA key fingerprint is c4:52:d6:a3:d4:65:0d:5e:2e:66:d8:ab:de:ad:12:be.

Are you sure you want to continue connecting (yes/no)?

Answering yes results in the message:

Warning: Permanently added ’monitor,xxx.yyy.aaa.bbb’ (RSA) to the

list of known hosts.

The next time a login is attempted, the authenticity question is not asked anyore. However, the proper
value of the host’s RSA key fingerprint (i.e., the key fingerprint of the client computer) should always be
verified to prevent man in the middle attacks. The proper value may be obtained at the client by issuing
there the command

ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key.pub

This should show the same value of the fingerprint as shown when the first ssh connection was established.
E.g.,

1024 c4:52:d6:a3:d4:65:0d:5e:2e:66:d8:ab:de:ad:12:be ssh_host_rsa_key.pub

3.0.4 Using the proper shell

On order to minimize the amount of clutter and possibly complications when only a simple command-
shell is required for executing commands, it is suggested to use a bash(1) shell when logging into
account@client’s account.

9

When another shell is already used for account@client, then an extra account (optionally using the same
UID as the original account, but using sh(1) as the shell), could be defined in the client’s /etc/passwd

file. In the passwd(5) file this could, e.g., be realized for root as rootsh as follows:

rootsh:x:0:0:root:/root:/bin/bash

If shadow passwording is used, a matching entry in the /etc/shadow file is required as well.

10

Chapter 4

The `poli
y' �le

Stealth uses a policy file consisting of two sections, the second section is optional, and starts at a line
merely containing %%.

Each policy file is uniquely associated with a host to be tested. Each host may have multiple policy files,
though. In that case, each policy file defines its own set of checks to be performed.

• The policy file’s first section consists of two sets of data: use directives (starting with the keyword
USE) and commands.

• The (optional) second section starts at a line merely containing %%. Following this separating line
several long option specifications can be entered (cf. section 5.2). Options specified on the command-
line take priority over options specified in the policy file. Although the –reload option reloads the
policy file, it will not change option values originally specified as command-line options.

This section may contain specifications of the skip-files and log options. Relative file locations
specified for these options are interpreted relative to the location of the policy file. E.g., if the policy
file argument is specified as /root/client/policy then the specification log: client.log results
in stealth writing its logs into the file /root/client/client.log.

The policy file’s first section consists of three sets of data: define directives (starting with the keyword
DEFINE), use directives (starting with the keyword USE) and commands.

Directives are written in capitals, and should appear exactly as written below.

Blank lines and information beyond hash-marks (#) are ignored, while lines following lines terminating
in backslashes (\) will be concatenated (en passant removing these backslashes). Leading white space on
lines of the policy file is ignored.

4.1 DEFINE dire
tives

DEFINE directives can be used to define symbols for longer strings. A DEFINE directive is constructed as
follows:

DEFINE name that what is defined by ‘name’

Here,

11

• the name following DEFINE is the symbol that may be used in USE directives (see below) and commands

(see below).

• DEFINE symbols can be used in other DEFINE symbols. However, it is the responsibility of the policy
file’s author to make sure that (indirect) circular definitions are avoided. E.g., after:

DEFINE A ${B}

DEFINE B ${A}

DEFINE C ${C}

USE MAILARGS ${A} ${B} ${C}

MAILARGS will be expanded to

${A} ${A} ${C}

• The text following DEFINE name is then inserted literally into the USE directive or command.

Example:

DEFINE SSH /usr/bin/ssh frank@localhost -q

DEFINE EXECSHA1 -xdev -perm /111 -type f -exec /usr/bin/sha1sum {} \;

The symbols defined by DEFINE directives may consist of letters, digits and the underscore characters
(_). In the definition of the symbol any character can be used. However, initial and/or trailing blanks
are removed from definitions.

To insert a definition into a USE directive or command use the form

${name}

E.g., ${EXECSHA1}. Concrete examples are provided below.

4.2 USE dire
tives

USE directives provide stealth with arguments which may be conditional to a certain installation. The
following USE directives are supported:

• USE BASE basedirectory

BASE defines the directory from where stealth operates. All relative path specifications in this
section of the policy file are interpreted relative to BASE. By default this is the directory where
stealth was started.

If necessary, stealth creates all BASE and other directories below BASE.

Example: using the specification

USE BASE /root/client

results in all information generated by stealth being written in or below the directory /root/client.

• USE DD <dd>

The DD specification uses /bin/dd as default, and defines the location of the dd(1) program, both
on the server and on the client. The DD program is used to copy files between the client and the
monitor without creating separate ssh-connections. The DD program is only used by stealth for
the PUT and GET commands, described below.

Example showing the default:

12

USE DD /bin/dd

• USE DIFF path-to-diff

The DIFF specification uses /usr/bin/diff as default, and defines the location of the diff(1)
program. The diff(1) program is used to compare a formerly created logfile of an integrity check to
a newly created logfile.

Example showing the default:

USE DIFF /usr/bin/diff

• USE DIFFPREFIX <prefix>

The DIFFPREFIX specification defines the size of the prefix added by the DIFF command to lines
produced by commands executed through stealth. The default /usr/bin/diff program prefixes
lines by either ‘> ’ or ‘< ’. The default value for <prefix> therefore equals 2.

Example showing the default:

USE DIFFPREFIX 2

• USE EMAIL address

The EMAIL specification defines the email-address to e-mail the client’s integrity scan report to.
Mail is only sent when information has changed.

Example showing the default:

USE EMAIL root

• USE MAILER mailer

The MAILER specification defines the program that is used to send the mail to the EMAIL-
address. By default this is /usr/bin/mail(1). The MAILER program is called as follows:

MAILER MAILARGS EMAIL

(MAILARGS: see below). The information to be mailed is read from MAILER’s standard input stream.

Example showing the default:

USE MAILER /usr/bin/mail

• USE MAILARGS arguments The MAILARGS specification defines the arguments to be to be
passed to the MAILER program. By default this is

USE MAILARGS -s "STEALTH scan report"

Note that blanks may be used in the subject specification: use double or single quotes to define
elements containing blanks. Use \" to use a double quote in a string that is itself delimited by
double quotes, use \’ to use a single quote in a string that is itself delimited by single quotes.

Subtlety: in constructions like

USE MAILARGS " ’t was brillig " and ’t went well

the following arguments are passed to MAILER:

– " ’t was brillig "

– and

13

– ’t

– went

– well

So, when single- and double-quoted strings overlap, the first string is taken as a string, and the
information beyond the first string is thereupon interpreted.

• USE REPORT <file-spec>

REPORT defines the name of the reportfile. Information is always appended to this file. At each
stealth integrity scan a time marker line is written to the report file. Only when (in addition to the
marker line) additional information is appended to the report file the added contents of the report
file are mailed to the mail address specified in the USE EMAIL specification. When a relative file
specification is used it is interpreted a location relative to the USE BASE specification.
Example showing the default:
USE REPORT report

• USE SH <sh>

The SH specification uses /bin/sh as default, and defines the command shell used by the monitor
to execute commands on itself. This must be an absolute path specification.
Example showing the default:
USE SH /bin/sh

• USE SSH <user>

The SSH specification has no default, and must be specified. This must be an absolute path
specification.

Assuming the client trusts the monitor (which is after all what this program is all about, so this
should not be a very strong assumption), preferably the public ssh key of the monitor should be
placed in the client’s root .ssh/authorized_keys file, granting the monitor root access to the client.
Root access is normally needed to gain access to all directories and files of the client’s file system.

In practice, connecting to an account using the sh(1) shell is preferred. When another shell is
already used by that account, one should make sure that its shell doesn’t define its own redirections
for standard input and standard output. One way to accomplish that is for force the execution of
/bin/sh in the USE SSH specification.

An example of an SSH specification to scan a localhost is:

USE SSH root@localhost -T -q # root’s shell is /bin/sh

The same, now explicitly using /bin/bash:

USE SSH root@localhost -T -q exec /bin/bash # root uses another shell

Alternatively, –noprofile can be specified to prevent any profile-initialization:

USE SSH root@localhost -T -q exec /bin/bash --noprofile

In some installations stealth is used to inspect the monitor itself, even though this is not recommended,
as it breaks one of the main reasons for stealth’s existence. But in those situations (so, where stealth is
used to monitor the integrity of the localhost), /bin/bash could be specified at the USE SSH directive.
For example:

For stealth inspecting localhost:

USE SSH /bin/bash --noprofile

14

4.3 Commands

Following the USE specifications, commands can be specified. The commands are executed in their order
of appearance in the policy file. Processing continues until the last command has been processed or until
a tested command (see below) returns a non-zero return value.

4.3.1 LABEL
ommands

The following LABEL commands are available:

• LABEL text

This defines a text-label which is written to the REPORT file, just before the output generated by
the next CHECK-command. If the next CHECK-command generates no output, the label is not
written to the REPORT-file. Once a LABEL has been defined, it is used until it is redefined by
the next LABEL command. Use an empty LABEL command to suppress printing labels.

The text may contain \n characters (two characters) which are transformed to a newline character.

• LABEL

As noted, this clears a previously defined LABEL command.

Examples:

LABEL Inspecting files in /etc\nIncluding subdirectories

LABEL

The latter LABEL command clears the text of the former LABEL command.

4.3.2 LOCAL
ommands

LOCAL commands can be used to specify commands that are executed on the monitor itself. The
following LOCAL commands are available:

• LOCAL command

Execute command on the monitor, using the SH command shell. The command must succeed (i.e.,
must return a zero exit value). Example:

LOCAL mkdir /tmp/client

This command creates the directory /tmp/client on the monitor.

• LOCAL NOTEST command

Execute command on the monitor, using the SH command shell. The command may or may not
succeed. Example:

LOCAL NOTEST mkdir /tmp/subdir

This command creates /tmp/subdir on the monitor. The command fails if the directory cannot be
created, but this does not terminate stealth.

15

• LOCAL CHECK [LOG =] logfile [pathOffset] command

Execute command on the monitor, using the SH command shell. The command must succeed. The
output of this command is compared to the output of this command generated during the previous
integrity check run by stealth.

The phrase LOG = is optional. When a relative file location is specified at <file-spec> it is
interpreted relatively to the USE BASE path specification.

PathOffset is also optional. If specified it defines the (0-based) offset where path-names of inspected
files start in lines produced by <command>. By default stealth assumes that the first occurrence of
a forward slash defines the first character of the path-names of inspected files.

For example, if diff-output looks like this:

01234567890123456789012345678901234567890 (column offsets, not part of

the diff-output)

33c33

< 90d8b506d249634c4ff80b9018644567 filename-specification

> b88d0b77db74cc4a742d7bc26cdd2a1e filename-specification

then the specification

LOCAL CHECK logfile 36 command-to-be-executed

informs stealth where to find the filename specifications in the diff-output. Using the standard
/usr/bin/diff command, this offset equals 2 + the offset of the filename-specification found
in command-to-be-executed.

If the command does not succeed a warning message is written to the report file. The warning
message informs the reader that ‘remaining results might be forged:

*** BE CAREFUL *** REMAINING RESULTS MAY BE FORGED

This situation may occur, e.g., if an essential program (like sha1sum) was transferred to the monitor,
and it was apparently modified since the previous check. Processing continues, but remaining checks
performed at the client computer should be interpreted with extreme caution.

The output of this command is compared to the output of this command generated during the
previous run of stealth. Any differences are written to REPORT.

If differences were found, the existing logfile name is renamed to logfile.YYYYMMDD-HHMMSS, with
YYYYMMDD-HHMMSS the datetime-stamp at the time stealth was run.

Over time, many logfile.YYMMDD-HHMMSS files could be accumulated. It is up to the monitor’s
systems manager to decide what to do with old datetime-stamped logfiles. For instance, the following
script removes all stealth reports below the current directory that are older than 30 days:

#/bin/sh

FILES=‘find ./ -path ’*[0-9]’ -mtime +30 -type f‘

if ["$FILES" != ""] ; then

rm -f $FILES

fi

The logfile specifications may use relative and absolute paths. When relative paths are used, these
paths are relative to BASE. When the directories implied by the logfile specifications do not yet
exist, they are created first.

Example:

16

LOCAL CHECK LOG = local/sha1sum sha1sum /tmp/sha1sum

This command will check the SHA1 sum of the /tmp/sha1sum program. The resulting output is
saved at BASE/local/sha1sum. The program must succeed (i.e., sha1sum must return a zero
exit-value).

• LOCAL NOTEST CHECK [LOG =] logfile [pathOffset] command

Execute command on the monitor, using the SH command shell.

The phrase LOG = is optional. When a relative file location is specified at <file-spec> it is
interpreted relatively to the USE BASE path specification.

The command may or may not succeed. Otherwise, the program performs exactly like the LOCAL
CHECK ... command, discussed above.

Example:

LOCAL NOTEST CHECK LOG=local/sha1sum sha1sum /tmp/sha1sum

This command will check the SHA1 sum of the /tmp/sha1sum program. The resulting output is
saved at BASE/local/sha1sum. The program may or may not succeed (i.e., sha1sum may or may
not return a zero exit-value).

4.3.3 REMOTE
ommands

Plain commands can be executed on the client computer by merely specifying them. Of course, this means
that programs called LABEL, LOCAL USE or DEFINE, cannot be executed, since these names are interpreted
otherwise by stealth. It’s unlikely that this will cause problems. Remote commands must succeed (i.e.,
their return codes must be 0).

Remote commands are commands executed on the client using the SSH shell. These commands are
executed using the standard PATH set for the SSH shell. However, it is advised to specify the full pathname
to the programs to be executed, to prevent “trojan approaches” where a trojan horse is installed in an
‘earlier’ directory of the PATH-specification than the intended program.

Two special remote commands are GET and PUT, which can be used to copy files between the client and
the monitor. Internally, GET and PUT use the DD use-specification. If a non-default specification is used,
one should ensure that the alternate program accepts dd(1)’s if=, of=, bs= and count= options. With
GET the options bs=, count= and of= are used, with PUT the options bs=, count= and if= are used.
Normally there should be no need to alter the default DD specification.

The GET command may be used as follows:

• GET <client-path> <local-path>

Copy the file indicated by client-path at the client to local-path at the monitor. client-path

must be the full path of an existing file on the client, local-path may either be a local directory,
in which case the client’s file name is used, or another file name may be specified, in which case the
client’s file is copied to the specified local filename. If the local file already exists, it is overwritten
by the copy-procedure.

Example:

GET /usr/bin/sha1sum /tmp

The program /usr/bin/sha1sum, available at the client, is copied to the monitor’s /tmp directory.
If copying fails for some reason, any subsequent commands are skipped, and stealth terminates.

17

• GET NOTEST <client-path> <local-path>

Copy the file indicated by client-path at the client to local-path at the monitor. client-path

must be the full path of an existing file on the client, local-path may either be a local directory,
in which case the client’s file name is used, or another file name may be specified, in which case the
client’s file is copied to the specified local filename. If the local file already exists, it is overwritten
by the copy-procedure.

Example:

GET NOTEST /usr/bin/sha1sum /tmp

The program /usr/bin/sha1sum, available at the client, is copied to the monitor’s /tmp directory.
Remaining commands in the policy file are executed, even if the copying process wasn’t successful.

The PUT command may be used as follows:

• PUT <local-path> <remote-path>

Copy the file indicated by local-path at the monitor to remote-path at the client. The argument
local-path must be the full path of an existing file on the monitor. The argument remote-path

must be the full path to a file on the client. If the remote file already exists, it is overwritten by PUT.

Example:

PUT /tmp/sha1sum /usr/bin/sha1sum

The program /tmp/sha1sum, available at the monitor, is copied to the client as usr/bin/sha1sum.
If the copying fails for some reason, any subsequent commands are skipped, and stealth terminates.

• PUT NOTEST <local-path> <remote-path>

Copy the file indicated by local-path at the monitor to remote-path at the client. The argument
local-path must be the full path of an existing file on the monitor. The argument remote-path

must be the full path to a file on the client. If the remote file already exists, it is overwritten by PUT.

Example:

PUT NOTEST /tmp/sha1sum /usr/bin/sha1sum

Copy the file indicated by local-path at the monitor to remote-path at the client. The argument
local-path must be the full path of an existing file on the monitor. The argument remote-path

must be the full path to a file on the client. If the remote file already exists, it is overwritten by PUT.
Remaining commands in the policy file are executed, even if the copying process wasn’t successful.

Other commands to be executed on the client can be specified as follows:

• command

Execute ‘command’ on the client, using the SSH command shell. The command must succeed (i.e.,
must return a zero exit value). However, any output generated by the command is ignored. Example:

/usr/bin/find /tmp -type f -exec /bin/rm {} \;

This command will remove all ordinary files at and below the client’s /tmp directory.

• NOTEST command

Execute command on the client, using the SSH command shell. The command may or may not
succeed.

Example:

18

NOTEST /usr/bin/find /tmp -type f -exec /bin/rm {} \;

Same as the previous command, but this time the exit value of /usr/bin/find is not interpreted.

• CHECK [LOG =] logfile [pathOffset] command

Execute command on the client, using the SSH command shell.

The phrase LOG = is optional. When a relative file location is specified at <file-spec> it is
interpreted relatively to the USE BASE path specification.

PathOffset is also optional, and has the same meaning as for the LOCAL CHECK command, described
above.

The command must succeed. The output of this command is compared to the output of this
command generated during the previous run of stealth. Any differences are written to REPORT.
If differences were found, the existing logfile name is renamed to logfile.YYYYMMDD-HHMMSS, with
YYYYMMDD-HHMMSS being the datetime-stamp at the time stealth was run.

Note that the command is executed on the client, but the logfile is kept at the monitor. This
command represents the core of the method implemented by stealth: there will be no residues of
the actions performed by stealth on client computers.

Several examples (note the use of the backslash as line continuation characters):

CHECK LOG = remote/ls.root /usr/bin/find / \

-xdev -perm /6111 -type f -exec /bin/ls -l {} \;

All suid/gid/executable files on the same device as the root-directory (/) on the client computer are
listed with their permissions, owner and size information. The resulting listing is written on the file
BASE/remote/ls.root.

This long command could be formulated shorter using a DEFINE:

DEFINE LSFIND -xdev -perm /6111 -type f -exec /bin/ls -l {} \;

CHECK remote/ls.root /usr/bin/find / ${LSFIND}

Another example:

DEFINE SHA1SUM -xdev -perm /6111 -type f -exec /usr/bin/sha1sum {} \;

CHECK remote/sha1.root /usr/bin/find / ${SHA1SUM}

The SHA1 checksums of all suid/gid/executable files on the same device as the root-directory
(/) on the client computer are determined. The resulting listing is written on the file
BASE/remote/sha1.root.

• NOTEST CHECK [LOG =] logfile [pathOffset] command

Execute command on the client, using the SSH command shell.

The phrase LOG = is optional. When a relative file location is specified at <file-spec> it is
interpreted relatively to the USE BASE path specification.

PathOffset is also optional, and has the same meaning as for the LOCAL CHECK command, described
above. The command may or may not succeed. Otherwise, the program acts identically as the
CHECK ... command, described above. Example (using the same ${SHA1SUM})definition:

NOTEST CHECK LOG = remote/sha1.root /usr/bin/find / ${SHA1SUM}

The SHA1 checksums of all suid/gid/executable files on the same device as the root-directory
(/) on the client computer are determined. The resulting listing is written on the file
BASE/remote/sha1.root. stealth will not terminate if the /usr/bin/find program returns
a non-zero exit value.

19

4.3.4 Preventing Controller Denial of Servi
e (�max-size)

Either by malicious intent or by accident (as happened to me) the monitor may be a victim of a (self-
inflicted) Denial of Service (DOS) attack. This DOS attack may occur when the client (apparently) sends
a never ending stream of bytes in response to a GET or REMOTE command. Once one of my monitors fell
victim to this attack when a client’s power went down and the monitor kept on trying to read bytes from
that client filling up the monitor’s disk....

This problem was of course caused by a programming error: while reading information from a client
stealth failed to check whether the reading had actually succeeded. This bug has now been fixed, but an
intentional DOS attack could still be staged along this line when, e.g., the find(1) command is somehow
replaced by a manipulated version continuously writing information to its standard output stream. With-
out further precaution stealth would receive a never ending stream of bytes to be written to its ‘report’
file, thus causing its disk to fill up.

To prevent this from happening stealth now offers the –max-size command line option allowing the
specification of the maximum size of a stream of bytes received by stealth (e.g., a report or downloaded
file). The maximum is used for each individual download and can be specified in bytes (using no suffix or
the B suffix), kilo-bytes (using K), mega-bytes (using M) or giga-bytes (using G). The default is set at 10M,
equivalent to the command line specification of –max-size 10M.

If a file or report received from the client exceeds its maximum allowed size then stealth terminates after
writing the following message to the report file (which is sent to the configured mail address):

STEALTH - CAN’T CONTINUE: ‘<name of offending file>’ EXCEEDS MAX.

DOWNLOAD SIZE (<size shown>)

STEALTH - THIS COULD SIGNAL A SERIOUS PROBLEM WITH THE CLIENT

STEALTH - ONE OR MORE LOG FILES MAY BE INVALID AS A RESULT

STEALTH - *** INVESTIGATE ***

Since a –max-size specification may cause stealth to terminate while receiving the output of a (remotely
run) command, an empty or partial log file will be the result. Of course this partial result is spurious as
it is a direct result of stealth terminating due to a size violation.

After investigating (and removing) the reasons for the size violation a new stealth run using the previous
log file as the latest baseline should show only expected changes.

For example, assume the following situation represents a (valid) state of logfiles:

etc stealth

setuid stealth.20080316-105756

Now stealth is run with –max-size 20, prematurely terminating stealth. This results in the following
set of logfiles:

etc stealth

setuid stealth.20080316-105756

stealth.20080316-110215

The file stealth now contains incomplete data with the (latest) file stealth.20080316-110215 containing
its previous contents.

The reasons for the size-violation should of course be investigated and removed. It is suggested to move

20

the file last saved (stealth.20080316-110215) to the file stealth, as it represents the state before the
size violation was encountered. Following this stealth should operate normally again.

21

Chapter 5

Running `stealth'

Now that stealth has been compiled, the construction of a policy file has been covered, and a service-
account on the client has been defined, what must be done to run stealth in practice?

Here’s what remains to be done:

• Install stealth at a proper location

• Construct one or more policy files

• Learn to interpret stealth’s output.

• Optionally, automate the removal of old log-files.

• Determine a schedule for running stealth automatically, e.g. using cron(1) or ssh-cron(1)

In this chapter, these topics are discussed.

5.1 Installing `stealth'

As stealth is mainly a system administrator’s tool, it could be installed in /usr/bin. In that case, do
(as root) in the directory where stealth was compiled/unpacked:

./build install program

Alternatively, another default location may be specified in the INSTALL.im file or may be provided to the
build script. E.g.,

./build install program /usr/local/bin/stealth

installing the binary program as /usr/local/bin/stealth.

The provided icmake build script can be started without arguments for an overview of possible com-
mands.

22

5.2 Stealth
ommand-line and poli
y �le options

Short options are provided between parentheses, immediately following their long option equivalents.

Option descriptions showing (C) can only be used on the command-line, and are ignored when specified
in the second section of the policy file.

In the overview of options ‘<uds>’ represents the name of the Unix Domain Socket to use, and
‘<file-spec>’ refers to a (relative or absolute) specification of a file location.

With the first and second synopses relative locations (of the Unix Domain Socket and of other file-
specifications) are interpreted relative to the current working directory.

Command-line options overrule options defined in the policy-file.

• –daemon (-d) <uds>: (C) run as background (daemon) process. When the Stealth daemon process
is started, the Unix Domain Socket (tt<uds>) may not already exist.

• –dry-run: (C) no integrity scans or reloads are performed, but are assumed OK. Remaining tasks
are normally performed;

• –help (-h): (C) Display help information and exit;

• –log (-L) <file-spec>: log messages are appended to ‘file-spec’. If file-spec does not exist, it is
first created;

• –logmail: mail sent by stealth is logged (requires –log or –syslog);

• –max-size <size>[BKMG]: files retrieved by GET commands may at most have <size> bytes (B),
KBytes (K), MBytes (M), GBytes (G). The default size is 10M, the default unit is B.

• –no-mail: mail is not sent. By default mail is sent as configured in the policy-file (–logmail can
be specified independently from –no-mail);

• –parse-policy-file (-p): (C) parse the policy file, after which stealth ends.
Specify once to see the numbered commands;
twice to see the policy file parsing steps as well.
Results are written to the std. output.

• –ping <uds>: (C) performs no actions, but is used to verify that a stealth daemon can be reached
via its Unix Domain Socket (<uds>). The daemon will respond even if it’s currently performing an
integrity scan. It is used by the /usr/bin/stealthcron script to verify that a stealth daemon is
alive.

• –random-interval (-i) <interval>[m]>: start the scan a random interval of <interval> sec-
onds (or minutes if an ‘m’ is appended (no blanks) to <interval>) following the delay specified at
–repeat (see below). This option requires specification of the –repeat and –daemon options;

• –reload <uds>: (C) reloads the configuration and skip-files and restarts the scan of the stealth
daemon process. Options defined in the policy file are also reloaded. However, command-line options
always take priority over options defined in the policy file, so when command-line options were used
when starting stealth in daemon mode, they cannot be modified by reloading the policy file.

• –repeat <seconds>: wake up and perform an integrity scan at interrupts or after <seconds>

seconds (or minutes if an ‘m’ is appended (no blanks) to <seconds>) after completing the previous
integrity scan. The option –random-interval can be used to add a random delay to <seconds>

until the next integrity scan is performed. This option requires specification of the and –daemon

option;

23

• –rerun <uds>: (C) start executing the integrity scan commands that are specifed in the stealth
daemon process’s policy file;

• –resume <uds>: (C) resume a suspended stealth process, implies –rerun;

• –run-command (-r) <nr>: (C) Only execute command number <nr> (natural number). Com-
mand numbers are shown by stealth –-parse-policy-file. This option can only be specified
using the second synopsis;

• –skip-files (-s) <file-spec>: all entries in <file-spec> are skipped. Their integrity is not
monitored. If an entry is already present in a log file then stealth once generates an IGNORING

message in the mail sent to the address specified at EMAIL in the policy file. Each entry mentioned
in file-spec must be on a line of its own and must be specified using absolute file paths. Entries
ending in a slash are assumed to be directories whose full contents must be skipped. Other entries
are interpreted as the names of files to skip. Initial and trailing blanks, empty lines and lines having
a # as their 1st non blank character are ignored. Here are some examples:

skip all files in user’s Mail directory

/home/user/Mail/

skip user’s .history file

/home/user/.history

• –stdout (-o): messages are (also) written to the std. output stream (only available with the second
synopsis);

• –suspend <uds>: (C) suspends a currently active stealth process. Following –suspend use
–resume to re-activate an stealth daemon or –terminate to end an stealth daemon;

• –syslog: write syslog messages;

• –syslog-facility <facility>: syslog facility to use. By default facility DAEMON is used;

• –syslog-priority <priority>: syslog priority to use. By default priority NOTICE is used;

• –syslog-tag <tag>: <tag> specifies the identifier that is prefixed to syslog messages. By default
the tag ‘STEALTH’ is used, see also the next section;

• –terminate <uds>: (C) terminate a currently active stealth process;

• –time-stamp (-t) <type>: the time-stamps to use. By default UTC. To use the local time specify
–time-stamp LT. The –time-stamp option does not apply to time-stamps generated by syslog (see
also the next section);

• –usage: (C) Display help information and exit;

• –verbosity <value>: determines the amount of logged information. Requires options –log or
–syslog. Possible values are:
0: nothing is logged
1: (default) mode reports and policy commands
2: also: ipc commands and actions
3: also: integrity scan informative messages

• –version (-v): (C) Display stealth’s version information and terminate;

• policy: file specification of the policy file. If a relative location is specified then this location is
interpreted relative to the current working directory. Stealth converts this relative specification
to an absolute file location, and an option like –reload will reload the policy file from the thus
determined absolute file path.

24

Only one of the options –daemon, –reload, –resume, –suspend or –terminate can be specified. The
options –reload, –rerun, –resume, –suspend, and –terminate ignore any other options.

The following options are still recognized for backward compatibility with stealth pre-3.00 versions and
will be removed in a future stealth version. They generate error messages suggesting alternatives:

• –echo-commands (-e): echo commands to std error when they are processed; use –log instead.

• –keep-alive: run as a daemon; use –daemon instead.

• –only-stdout: scan report is written to stdout; use –stdout instead.

• –quiet (-q): suppresses progress messages written to stderr; use –verbosity 0 instead.

• –suppress <uds>: suppresses a currently active stealth process; use –suspend instead.

The following options were discontinued starting since stealth version 3.00.00:

• –debug (option –verbosity or –dry-run could be used instead);

• –no-child-processes;

• –parse-config-file.

When specifying long options in policy files initial hyphens should be omitted. Here are some examples:

%%

log /tmp/stealth.log

verbosity 3

5.2.1 Rsyslog �ltering

When using rsyslogd(1) property based filters may be used to filter syslog messages and write them to
a file of your choice. E.g., to filter messages starting with the syslog message tag (e.g., STEALTH) use

:syslogtag, isequal, "STEALTH:" /var/log/stealth.log

:syslogtag, isequal, "STEALTH:" stop

Note that the colon is part of the tag, but is not specified with the syslog-tag option.

This causes all messages having the STEALTH: tag to be written on /var/log/stealth.log

after which they are discarded. More extensive filtering is also sup-
ported, see, e.g., http://www.rsyslog.com/doc/rsyslog_conf_filter.html and
http://www.rsyslog.com/doc/property_replacer.html

Time stamps written by rsyslogd are not controlled by stealth’s –time-stamp option, but, e.g., by a TZ

specification in /etc/default/rsyslog. Simply add the line

export TZ=UTC

to /etc/default/rsyslog, followed by restarting rsyslogd configures rsyslogd to generate time stamps
using UTC.

25

5.3 Constru
t one or more poli
y �les

Here we assume that stealth is run by root, and that root wants to store information about the host
client under the subdirectory /root/stealth/client.

Furthermore, we assume that reports of stealth integrity-scans should be sent to the user
admin@elsewhere, who is only interested in receiving a short summary of changes, as the full report
can always be read at the monitor itself. To accomplish this a small support-script was developed, filter-
ing the report generated by stealth down to its essentials.

As the sha1sum program on the client may be compromised, it is a good idea to start the integrity scan
by transferring the client’s sha1sum program to the monitor first, to verify the integrity of that program
locally (i.e., at the monitor), before trusting it to compute sha1sums of the client’s files. The same holds
true for any libraries and support programs (like find) that are used intensively during integrity scans.

Sha1sum checks should be performed on all setuid and setgid files on the client, and in order to be able
reach all files on client, root@monitor is allowed to login to the root@client account using an ssh

connection.

Furthermore, sha1sum checks should be performed on all configuration files, living under /etc and on the
file /usr/bin/find (which is used intensively when performing the integrity checks).

Next, the construction of the required policy file, implementing the abovementioned requirements, is
described in the following subsections.

5.3.1 DEFINE dire
tives

First we write some DEFINE directives simplifying complex command specifications:

DEFINE SSHCMD /usr/bin/ssh root@client -T -q exec /bin/bash --noprofile

DEFINE EXECSHA1 -xdev -perm +u+s,g+s \(-user root -or -group root \) \

-type f -exec /usr/bin/sha1sum {} \;

The first DEFINE defines the ssh command to use: an ssh-connection will be made to the root account at
the client.

The second DEFINE shows the arguments for find(1) when looking for all root setuid or setgid normal
files. For all these files the sha1sum(1) program should be run.

5.3.2 USE dire
tives

Next some USE directives, matching our specific, local, situation, are defined:

USE BASE /root/stealth/client

USE EMAIL admin@elswhere

USE MAILER /root/bin/stealthmail

USE MAILARGS "Client STEALTH report"

USE SSH ${SSHCMD}

• All output is written under the /root/stealth/client directory;

26

• Mail is sent to the user admin@elsewhere;

• As mail program we use a filtering script (stealthmail), which is installed in /root/bin;

• The script handles its own argument. As it can be used by stealth performing integrity scans on
other clients as well, it is given an argument which can be used as e-mail subject, identifying the
client-computer that has been integrity-scanned;

• The ssh-command is defined by the SSHCMD. It’s definition is used at the USE SSH specification;

• Default values of all remaining USE directives are OK, and thus were not explicitly specified. They
are:

USE DD /bin/dd

USE DIFF /usr/bin/diff

USE REPORT report

USE SH /bin/sh

5.3.3 Commands

The following commands are now defined:

• first, we copy the client’s sha1sum program to the monitor. In practice, this should also include the
shared object libraries that are used by sha1sum, as they might have become corrupted as well;

• Once sha1sum is locally available its integrity is verified;

• Once the integrity of the client’s sha1sum has been verified, it is used to verify the integrity of the
client’s /usr/bin/find program;

• Following this, all setuid and setgid root files are located and checked for integrity;

• Finally, the integrity of the client configuration files under /etc is verified;

In this manual the sha1sum(1) program is frequently used when checking hash values. Stronger hash
functions (like sha256sum(1)) might be preferred in practice. sha256sum’s hash values are remarkably
longer than sha1sum’s hash values. When using these longer hash values in the manual it often clobbers
the layout of examples. Therefore in this manual sha1sum(1) is continued to be used.

Realize, however, that when updating existing policy files to use sha256sum(1) instead of sha1sum(1),
that previously generated log files (that used sha1sum(1)) are incompatible with log files obtained when
using sha256sum(1). In practice this means that new log files need to be generated, and any previously
geneerated log files must be disregarded.

Obtaining the client’s sha1sum program

To copy the client’s sha1sum program to a local directory we specify:

GET /usr/bin/sha1sum /root/tmp

This command must succeed.

27

Checking the integrity of the client’s sha1sum program

Next, we check the integrity of the received sha1sum program. For this, we use the monitor’s sha1sum

program:

LABEL \nCheck the client’s sha1sum program

LOCAL CHECK LOG = local/sha1 /usr/bin/sha1sum /root/tmp/sha1sum

The LABEL command writes the label to the report file just before writing the sha1sum program’s output.

The LOCAL command checks the sha1sum of the program copied from the client. The report is written on
the file /root/stealth/client/local/sha1. If this fails, stealth terminates, alerting admin@elsewhere

that the check failed. This is a serious event, as it indicates that either the monitor’s sha1sum is behaving
unexpectedly or that the client’s sha1sum program has unexpectedly changed.

The sha1sum program may have changed due to a normal upgrade. If so, admin@elsewhere will know
this, and can (probably) ignore the warning. The next time stealth is run, the (now updated) SHA1 value
is used, and it again compares the obtained SHA1 value to the one obtained for the downloaded sha1sum

program.

Checking the client’s /usr/bin/find program

The client normally uses its find command intensively: find is a great tool for producing reports about
almost any conceivable combination of characteristics of sets of files. Of course, the client’s find command
must itself be OK, as well as the client’s sha1sum program. Now that we know that the client’s sha1sum
program is OK, we can use it to check the client’s /usr/bin/find program.

Note that the monitor itself no longer needs to invest any significant processing load: only the client itself
is taxed for checking the integrity of its own files:

LABEL \nchecking the client’s /usr/bin/find program

CHECK LOG = remote/binfind /usr/bin/sha1sum /usr/bin/find

Checking the client’s setuid/setgid files

Having checked the client’s sha1sum and find programs, sha1 checksum checks should be performed on
all setuid and setgid files on the client. For this we activate the sha1sum program on the client. In order
to check the setuid/setgid files, the following command is added to the policy file:

LABEL \nsuid/sgid/executable files uid or gid root on the / partition

CHECK LOG = remote/setuidgid /usr/bin/find / ${EXECSHA1}

Checking the configuration files in the client’s /etc/ directory

Finally, the client’s configuration files are checked. Some of these files change so frequently that we don’t
want them to be checked. E.g., /etc/adjtime, /etc/mtab. To check the configuration file, do:

28

LABEL \nconfiguration files under /etc

CHECK LOG = remote/etcfiles \

/usr/bin/find /etc -type f -not -perm /6111 \

-not -regex "/etc/\(adjtime\|mtab\)" \

-exec /usr/bin/sha1sum {} \;

5.3.4 The
omplete `poli
y' �le

Here is the complete policy file we’ve constructed so far:

DEFINE SSHCMD /usr/bin/ssh root@client -T -q exec /bin/bash --noprofile

DEFINE EXECSHA1 -xdev -perm +u+s,g+s \(-user root -or -group root \) \

-type f -exec /usr/bin/sha1sum {} \;

USE BASE /root/stealth/client

USE EMAIL admin@elswhere

USE MAILER /root/bin/stealthmail

USE MAILARGS "Client STEALTH report"

USE SSH ${SSHCMD}

USE DD /bin/dd

USE DIFF /usr/bin/diff

USE REPORT report

USE SH /bin/sh

GET /usr/bin/sha1sum /root/tmp

LABEL \nCheck the client’s sha1sum program

LOCAL CHECK LOG = local/sha1 /usr/bin/sha1sum /root/tmp/sha1sum

LABEL \nchecking the client’s /usr/bin/find program

CHECK LOG = remote/binfind /usr/bin/sha1sum /usr/bin/find

LABEL \nsuid/sgid/executable files uid or gid root on the / partition

CHECK LOG = remote/setuidgid /usr/bin/find / ${EXECSHA1}

LABEL \nconfiguration files under /etc

CHECK LOG = remote/etcfiles \

/usr/bin/find /etc -type f -not -perm /6111 \

-not -regex "/etc/\(adjtime\|mtab\)" \

-exec /usr/bin/sha1sum {} \;

5.4 Running `stealth' for the �rst time

When stealth is now run, it creates its initial report files under root/stealth/client.

The first time stealth is run, it is usually run ‘by hand’. The initial run by hand probably benefits from

29

the –stdout option, as it shows all executed commands on the standard output:

stealth --stdout policy

Furthermore, the reports are initialized. Running stealth this way for the policy file constructed in the
previous sections produces the following output (lines were wrapped to improve readability):

GET /usr/bin/sha1sum /root/tmp

LABEL \nCheck the client’s sha1sum program

LOCAL CHECK LOG = local/sha1 /usr/bin/sha1sum /root/tmp/sha1sum

LABEL \nchecking the client’s /usr/bin/find program

CHECK LOG = remote/binfind /usr/bin/sha1sum /usr/bin/find

LABEL \nsuid/sgid/executable files uid or gid root on the / partition

CHECK LOG = remote/setuidgid /usr/bin/find / -xdev -perm +u+s,g+s

\(-user root -or -group root \) -type f

-exec /usr/bin/sha1sum {} \;

LABEL \nconfiguration files under /etc

CHECK LOG = remote/etcfiles /usr/bin/find /etc

-type f -not -perm /6111 -not -regex "/etc/\(adjtime\|mtab\)"

-exec /usr/bin/sha1sum {} \;

LOCAL /usr/bin/scp -q root@client:/usr/bin/sha1sum /root/tmp

LABEL \nCheck the client’s sha1sum program

LOCAL CHECK LOG = local/sha1 /usr/bin/sha1sum /root/tmp/sha1sum

LABEL \nchecking the client’s /usr/bin/find program

CHECK LOG = remote/binfind /usr/bin/sha1sum /usr/bin/find

LABEL \nsuid/sgid/executable files uid or gid root on the / partition

CHECK LOG = remote/setuidgid /usr/bin/find / -xdev -perm +u+s,g+s

\(-user root -or -group root \) -type f

-exec /usr/bin/sha1sum {} \;

LABEL \nconfiguration files under /etc

CHECK LOG = remote/etcfiles /usr/bin/find /etc

-type f -not -perm /6111 -not -regex "/etc/\(adjtime\|mtab\)"

-exec /usr/bin/sha1sum {} \;

5.4.1 The mailed report

The /root/bin/stealthmail script is called with the following arguments:

"Client STEALTH report" admin@elswhere

The mailed report contains information comparable to this:

STEALTH (4.00.00) started at Sat, 07 Feb 2015 22:10:56 +0100

Check the client’s sha1sum program

Initialized report on local/sha1

checking the client’s /usr/bin/find program

Initialized report on remote/binfind

30

suid/sgid/executable files uid or gid root on the / partition

Initialized report on remote/setuidgid

configuration files under /etc

Initialized report on remote/etcfiles

5.4.2 Files under /root/stealth/
lient

Under /root/stealth/client the following entries are now available:

• local: below this directory the reports of the locally performed checks are found. Using our demo
policy file, only one logfile is found here: sha1, containing the client’s SHA1 checksum of its
/usr/bin/sha1sum program:

45251e259bfaf1951658a7b66c328c52 /root/tmp/sha1sum

• remote: at this directory the reports of the remotely performed checks are found. Using our demo
policy file, three files were created:

The file binfind, containing the checksum of the client’s /usr/bin/find program:

fc62fc774999584f1e29e0f94279a652 /usr/bin/find

The file etcfiles, containing the checksums of the client’s configuration files under /etc (shown
only partially):

ced739ecb2c43a20053a9f0eb308b2b0 /etc/modutils/aliases

a2322d7e2f95317b2ddf3543eb4c74c0 /etc/modutils/paths

f9e3eac60200d41dd5569eeabb4eddff /etc/modutils/arch/i386

f07da2ebf00c6ed6649bae5501b84c4f /etc/modutils/arch/m68k.amiga

2893201cc7f7556160fa9cd1fb5ba56a /etc/modutils/arch/m68k.atari

...

bf73b4e76066381cd3caf80369ce1d0e /etc/deluser.conf

4cd70d9aee333307a09caa4ef003501d /etc/adduser.conf.dpkg-save

8c749353c5027d0065359562d4383b8d /etc/gimp/1.2/gtkrc_user

3ec404ec597ef5460600cccf0192f4d6 /etc/gimp/1.2/unitrc

8c740345b891179228e3d1066291167b /etc/gimp/1.2/gtkrc

The file setuidgid, containing the checksums of the client’s setuid/setgid root files (shown only
partially):

030f3f84ec76a8181cca087c4ba655ea /bin/login

b6c0209547d88928f391d2bf88af34aa /bin/ping

5d324ad212b2ff8f767637ac1a8071ec /bin/su

344dbedc398d5114966914419ef53fcc /usr/bin/wall

27b045bd7306001f9ea31bc18712d8b7 /usr/bin/rxvt-xpm

...

3567b18ffc39c2dc6ec0c0d0fc483f4f /usr/lib/ssh-keysign

3383a7955ac2406311e9aa51c6ac9c2c /usr/X11R6/bin/X

3c99ea0425c6e0278039e16478d2fb57 /usr/X11R6/bin/xterm

d590f7f5b4d6ae61680692a52235d342 /usr/local/bin/setuidcall

4c17203d7d91ec4946dea2f0ae365d5b /sbin/unix_chkpwd

31

Of course, the checksums and the filenames shown are only for documentation purposes. At other
systems different files and/or checksums will be reported.

• The file /root/client/report New lines are always appended to the /root/client/report

file. It will never shorten, unless shorten by the systems administrator at ‘monitor’.

This file contains the following:

STEALTH (3.00.00) started at Wed, 20 Aug 2014 11:06:50 +0000

Check the client’s sha1sum program

Initialized report on local/sha1

checking the client’s /usr/bin/find program

Initialized report on remote/binfind

suid/sgid/executable files uid or gid root on the / partition

Initialized report on remote/setuidgid

configuration files under /etc

Initialized report on remote/etcfiles

This completes the information generated by stealth during its first run.

5.5 Subsequent `stealth' runs

5.5.1 All �les unaltered

When stealth is subsequently run, it updates its report files under root/stealth/client. If nothing
has changed, the log-files remain unaltered. Subsequent runs will, however, add some new info to the file
/root/client/report:

STEALTH (4.00.00) started at Sat, 07 Feb 2015 22:10:56 +0100

Check the client’s sha1sum program

Initialized report on local/sha1

checking the client’s /usr/bin/find program

Initialized report on remote/binfind

suid/sgid/executable files uid or gid root on the / partition

Initialized report on remote/setuidgid

configuration files under /etc

Initialized report on remote/etcfiles

STEALTH (4.00.00) started at Sat, 07 Feb 2015 22:22:15 +0100

Note that just one extra line was added: a timestamp showing the date/time of the last run. The systems
administrator may rotate the report file every once in a while to reclaim some disk space.

32

5.5.2 Modi�
ations o

urred

Basically, three kinds of modifications are possible: additions, modifications, and removals. Here we’ll
show the effects all these changes have on stealth’s output.

For illustrative purposes, the following changes were made to the client’s files:

• /etc/motd was changed

• the file timezone~ was removed

• the file /etc/motd.org was created

Next, stealth was again run, producing the following output:

• The following new info is now added to file /root/client/report:

STEALTH (3.00.00) started at Wed, 20 Aug 2014 11:13:38 +0000

configuration files under /etc

ADDED: /etc/motd.org

< 945d0b8208e9861b8f9f2de155e619f9 /etc/motd.org

MODIFIED: /etc/motd

< 7f96195d5f051375fe7b523d29e379c1 /etc/motd

> 945d0b8208e9861b8f9f2de155e619f9 /etc/motd

REMOVED: /etc/timezone~

> 6322bc8cb3ec53f5eea33201b434b74b /etc/timezone~

Note that all changes were properly detected and logged in the file /root/client/report.

• Furthermore, a matching report was sent by mail :

STEALTH (3.00.00) started at Wed, 20 Aug 2014 11:13:38 +0000

configuration files under /etc

ADDED: /etc/motd.org

< 945d0b8208e9861b8f9f2de155e619f9 /etc/motd.org

MODIFIED: /etc/motd

< 7f96195d5f051375fe7b523d29e379c1 /etc/motd

> 945d0b8208e9861b8f9f2de155e619f9 /etc/motd

REMOVED: /etc/timezone~

> 6322bc8cb3ec53f5eea33201b434b74b /etc/timezone~

Note that the report only shows the info that was added to the /root/client/report file.

The report itself could be beautified further. E.g., I use the following script to mail the report to
the addressee:

#!/bin/bash

NAME=‘basename $0‘

tee /root/stealth/lastreport/$NAME | egrep -v ’^([[:space:]]|[[:space:]]*$)’ |

sort | uniq | mail -s $1 $2

33

For the client computer, this little script writes the mailed report on a file
/root/stealth/lastreport/client, overwriting its previous contents, removes all lines be-
ginning with blanks (thus trimming away the diff-generated lines), and e-mails the sorted and
uniqed lines using mail. The addressee (admin@elsewhere) then receives the following information:

ADDED: /etc/motd.org

MODIFIED: /etc/motd

REMOVED: /etc/timezone~

STEALTH (3.00.00) started at Wed, 20 Aug 2014 11:13:38 +0000

configuration files under /etc

In practice this provides me with all the information I need if something out of the ordinary has
happened.

• Finally, the file

/root/stealth/client/remote/etcfiles

was recreated, saving the old file as

/root/stealth/client/remote/etcfiles.20021028-112851

As remarked earlier (see section 4.3), many logfile.YYMMDD-HHMMSS files could eventually accu-
mulate. As discussed in section 4.3, it might be considered to remove old log files every now and
then.

5.5.3 Failing LOCAL
ommands

If the client’s sha1sum program itself is altered, a serious situation has developed. In that case, further
actions by stealth would be suspect, as their results might easily be currupted. Additional checks will be
performed, but a warning is generated on the report file (and in the mail sent to admin@elsewhere):

STEALTH (4.00.00) started at Sat, 07 Feb 2015 22:27:15 +0100

Check the client’s sha1sum program

MODIFIED: /root/tmp/sha1sum

< fc62fc774999584f1e29e0f94279a652 /root/tmp/sha1sum

> 45251e259bfaf1951658a7b66c328c52 /root/tmp/sha1sum

*** BE CAREFUL *** REMAINING RESULTS MAY BE FORGED

configuration files under /etc

REMOVED: /etc/motd.org

> 945d0b8208e9861b8f9f2de155e619f9 /etc/motd.org

MODIFIED: /etc/motd

< 945d0b8208e9861b8f9f2de155e619f9 /etc/motd

> 7f96195d5f051375fe7b523d29e379c1 /etc/motd

(The report shows the removal of the previously added file motd.org, and the modification of motd. These
are real, as the original motd file, modified earlier, was restored at this point).

34

5.5.4 Skipping (some) integrity
he
ks

Some files or directories may not require integrity checks. Automated processes may modify files which
are not threatening the proper functioning of running programs or processes. In those cases a file can be
prepared holding the absolute paths of entries to be skipped. Each entry should appear on a line of its
own without any additional information.

Stealth can be informed about this file using the –skip-files <file-spec> option. When a relative
file specification is used with –skip-files it is interpreted a location relative to the current working
directory. The skip-files file itself must contain the paths of the entries to be skipped during file integrity
scans. If an entry is already present in a log file then stealth once generates an IGNORING message in the
mail sent to the address specified at EMAIL in the policy file. Each entry in a skip-file must be on a line
of its own and must be specified using absolute file paths. Entries ending in a slash are assumed to be
directories whose full contents must be skipped. Other entries are interpreted as the names of files to skip.
Initial and trailing blanks, empty lines and lines having a # as their 1st non blank character are ignored.

Here is an example:

stealth -e --skip-files /root/stealth/remote/skipping remote.pol

If an entry /etc/skipme appears in the current logs which is thereafter added to the skippath file then
the mail generated by stealth once contains a line like the following:

SKIPPING: /etc/skipme

> a7695bb2d019e60988e757a4b692acfe /etc/skipme

The reported hash-value is the hash-value at the time of the stealth-run reporting the SKIPPING message.

Entries ending in a slash are assumed to be directories whose contents must (recursively) be skipped.

5.6 Automating repeated `stealth' runs

To automate stealth’s integrity scans, a file /etc/cron.d/stealth could be created, containing a line
like

2,17,32,47 * * * * root test -x /usr/bin/stealth && \

/usr/bin/stealth /root/stealth/client.pol

This starts stealth 2 minutes after every hour. In this example the ssh-key must not require a passphrase,
as crontab(1) cannot provide passphrases of ssh-keys. Ssh-keys requiring passphrases can, however, be
used if repeated stealth runs are controlled by a program like ssh-cron(1).

In general, randomized events are harder to notice. For this stealth offers the –repeat and
–random-interval options. Both options expect an argument in seconds (or in minutes, if an m is
appended to the specification). After each integrity scan the next integrity scan starts after the time
interval specified by the –repeat option plus a random time value selected from the time interval specified
by the –random-interval option. For example, the stealth daemon started by the following command
repeatedly performs integrity scans between two and five minutes after the last integrity scan completed:

35

stealth --daemon /root/stealth/client.uds \

--repeat 2m --random-interval 3m /root/stealth/client.pol

Once this program has started its ssh(1) connection to the client host persists, and a possibly required
ssh-passphrase is no longer required. Additional (intermediate) integrity scans can always be requested
(also without requiring ssh-passphrase specifications) using the command

stealth --rerun /root/stealth/client.uds

5.7 Report File Rotation

When stealth performs integrity scans it appends information to the report file. This file therefore
eventually grows to a large size, and the systems manager controlling stealth might want to rotate the
report file every once in a while (e.g., using a program like logrotate(1), also see the upcoming section
5.7.2). To ensure that no log-rotation takes place while stealth is busy performing integrity scans (thus
modifying the report file) the options –suspend and –resume were implemented. Both options require
the process-ID file of currently active stealth process as their argument.

For example, if a stealth process was once started using the command

stealth --daemon /root/stealth/small.uds --repeat 900 \

/root/stealth/small.pol

then the –suspend and –resume commands for this process should be called as:

stealth --suspend /root/stealth/small.uds

stealth --resume /root/stealth/small.uds

The stealth process identified in the files provided as arguments to the –suspend and –resume options
is called the daemon stealth process below.

The –suspend option has the following effect:

• If the daemon stealth process is currently processing its policy file, performing an integrity scan,
then the currently executing policy file command is completed, whereafter further commands are
ignored, except for –resume (see below) and –terminate.

• Any scheduled integrity scans following the –suspend command are ignored by the daemon stealth
process;

• The daemon stealth process writes a message that it is being suspended to the report file and then
processes the report file as usual.

Now that the report file is no longer modified by the daemon stealth process, log-rotation may take place.
E.g., a program like logrotate(1) allows its users to specify a command or script just before log-rotation
takes place, and ‘stealth –suspend udsfile’ could be specified nicely in such a pre-rotation section.

The –resume option has the following effect:

36

• The daemon stealth process resumes its activities by performing another integrity scan. Thus,
–resume implies –rerun.

• Any scheduled integrity scans following the –resume command are again honored by the daemon
stealth process.

Note that, once –suspend has been issued, all commands except –resume and –terminate are ignored by
the daemon stealth process. While suspended, the –terminate command is acknowledged as a ‘emergency
exit’ which may or may not interfere with, e.g., an ongoing log-rotation process. The daemon stealth
process should not normally be terminated while it is in its suspended mode. The normal way to terminate
a stealth process running in the background is:

• Wait for the daemon stealth process to complete an ongoing series of integrity scan commands;

• Issue the ‘stealth –terminate udsfile’ command.

5.7.1 Status �le
leanup

Whenever stealth is run and it encounters a modified situation the already existing status file sum-
marizing that particular situation is saved and a new status file is created. Eventually, this will
result in many status files. While report files can be rotated, it is pointless to rotate old status
files, since they are never modified. Instead, status files exceeding a certain age could be removed
and more recent files might be zipped to conserve space. In stealth’s binary distribution the file
/usr/share/doc/stealth/usr/bin/stealthcleanup is provided which can be used to perform such a
cleanup. The script expects one argument: a resource file defining the following shell variables:

• directories: the directories below which the status files are found;

• gzdays: the number of days a status file must exist before it is compressed using gzip(1);

• rmdays: the maximum age (in days) of compressed status files. Files exceeding this age are removed
using rm(1).

Here is the stealthcleanup script as contained in the binary distribution’s
/usr/share/doc/stealth/usr/bin directory:

#!/bin/bash

usage()

{

echo "

Usage: $0 [-v] rc-file

Where:

-v: Show the actions that are performed

rc-file: resource file defining:

\‘directories’ - one or more directories containing status files

\‘gzdays’ - number of days status files may exist before they

are compressed

\‘rmdays’ - number of days gzipped status files may exist

before they are removed.

"

exit 1

}

37

error()

{

echo "$*" >&2

exit 1

}

if ["$1" == "-v"]

then

verbose=1

shift 1

else

verbose=0

fi

[$# == 1] || usage

now source the configuration file

. $1

for x in $directories

do

cd $x || error "\‘$x’ must be a directory"

if [$verbose -eq 1]

then

echo "

cd $x"

fi

if [$verbose -eq 1]

then

echo \

/usr/bin/find ./ -mtime +$rmdays -type f -regex ’.*[0-9]+-[0-9]+\.gz’ \

-exec /bin/rm {} \;

fi

/usr/bin/find ./ -mtime +$rmdays -type f -regex ’.*[0-9]+-[0-9]+\.gz’ \

-exec /bin/rm {} \;

if [$verbose -eq 1]

then

echo \

/usr/bin/find ./ -mtime +$gzdays -type f -regex ’.*[0-9]+-[0-9]+’ \

-exec /bin/gzip {} \;

fi

/usr/bin/find ./ -mtime +$gzdays -type f -regex ’.*[0-9]+-[0-9]+’ \

-exec /bin/gzip {} \;

done

exit 0

38

Assuming that the status files are written in /var/stealth/target/local and
/var/stealth/target/remote; that status file should be compressed when older than 2 days and
removed after 30 days, the resource file is:

directories="

/var/stealth/target/local

/var/stealth/target/remote

"

rmdays=30

gzdays=3

Furthermore assuming that the resourcefile is installed in /etc/stealth/cleanup.rc and the
stealthcleanup script itself in /usr/bin/stealthcleanup, the stealthcleanup script could be called
as follows:

/usr/bin/stealthcleanup /etc/stealth/cleanup.rc

Note that stealthcleanup may be called whether or not there are active stealth processes.

5.7.2 Using `logrotate' to
ontrol report- and status �les

A program like logrotate(1) allows its users to specify a command or script immediately following log-
rotation, and ‘stealth –resume pidfile’ could be specified nicely in such a post-rotation section.

Here is an example of a specification that can be used with logrotate(1). Logrotate (on Debian
systems) keeps its configuration files in /etc/logrotate.d, and assuming there is a host target,
whose report file is /var/stealth/target/report, the required logrotate(1) specification file (e.g.,
/etc/logrotate.d/target) could be:

/root/stealth/report /var/log/stealth/client-small.log {

weekly

rotate 12

compress

missingok

copytruncate

sharedscripts

prerotate

/usr/bin/stealth --suspend /root/stealth/small.uds

endscript

postrotate

/usr/bin/stealth --resume /root/stealth/small.uds

endscript

}

Using this specification file, logrotate(1) will

• perform weekly rotations of the report file;

• keep up to 12 rotated files, compressing them using gzip(1);

39

• suspend the stealth daemon, before rotating its report file; suspended;

• following the rotation, stealth’s actions are resumed.

Note thet stealth –resume xxx always initiates another file integrity scan.

40

Chapter 6

Ki
k-starting `stealth'

Here are the steps to take to kick-start stealth

• Install the stealth Debian package stealth_4.01.00_i386.deb and thus accept the provided binary
program (skipping the next series of steps) or do not accept the provided binary, and compile stealth
yourself, as per the following steps:

• Unpack stealth_4.01.00.tar.gz: tar xzvf tealth_4.01.00.tar.gz

• cd stealth;

• Inspect, and where necessary modify the values of the variables in the files INSTALL.cf and icmconf;

• Install a recent Gnu g++ compiler;

• Install the bobcat library (both the binary and development version)
(http://bobcat.sourceforge.net);

• Install the icmake program (http://icmake.sourceforge.net);

• Run ‘./build program strip’ to compile stealth;

• Run (probably as root) ‘./build install program’ to install;

• Optionally install documentation. See section 2.1.

Following the installation the stealth directory tree has become superfluous and can safely be removed.

Next, do:

• cp share/usr/bin/stealthmail /usr/local/bin

• mkdir /root/stealth

• cp documentation/example-policies/localhost.pol /root/stealth

ssh and bash (or another shell program) should be available. root@localhost should be able to login at
localhost using ssh root@localhost, using the /bin/bash. Check (as ‘root’) at least

ssh root@localhost

41

as this might ask you for a confirmation that you’ve got the correct host. Now, run

stealth /root/stealth/localhost.pol

to initialize the stealth-report files for localhost. This initializes the report for

• all root setuid/setgid executable files on localhost,

• and for all files under /etc/ on localhost.

The mail-report is sent to root@localhost.

Now change or add or remove one of these files, and rerun stealth. The file /tmp/stealth-4.01.00.mail
should reflect these changes.

42

Chapter 7

Usage info

When stealth is started without arguments, it provides some help about how to start it. A message like
the following is produced:

stealth V4.01.00

SSH-based Trust Enhancement Acquired through a Locally Trusted Host

Copyright (c) GPL 2005-2015

Usage 1 (activation modes):

stealth [options] policy

Where:

[options] - optional arguments (short options between parentheses,

option descriptions starting with (C) can only be used

on the command-line and are ignored when specified in the

policy file).

--daemon (-d) <uds>: (C) run as a background (daemon) process.

<uds> is the location of the Unix Domain Socket that is

used for communication with the stealth daemon process

--dry-run: (C) no integrity scans or reloads are performed, but

are assumed OK. Remaining tasks are normally performed

--log (-L) <file-spec>: log messages are appended to ‘<file-spec>’.

If <file-spec> does not exist, it is first created

--logmail: mail is logged (requires --log or --syslog)

--max-size value[BKMG]: files retrieved by GET may at most

have ‘value’ bytes (B), Kbytes (K), Mbytes (M), Gbytes (G).

By default: 10M; The default unit is ‘B’

--no-mail: mail is not sent. By default mail is sent as configured

in the policy-file (--logmail can be specified independently

from --no-mail)

--parse-policy-file (-p): (C) parse the policy file, no further actions.

Specify once to see the numbered commands,

twice to see the policy file parsing steps as well.

Results to std output.

--random-interval (-i) value: start integrity scans within

a random interval of ‘value’ seconds (minutes if an ‘m’

is appended to the specified value).

Requires --repeat.

--repeat value: start an integrity scan every ‘value’ seconds

43

(minutes if an ‘m’ is appended to the specified value).

--run-command (-r) value: (C) only execute command #‘value’

(not available in combination with --daemon)

--skip-files (-s) <file-spec>: skip the integrity checks of the

files having their absolute path names listed in ‘<file-spec>’

--stdout (-o): messages are (also) written to stdout

(not available in combination with --daemon)

--syslog: write syslog messages

--syslog-facility fac: syslog facility to use. By default DAEMON

--syslog-priority pri: syslog priority to use. By default NOTICE

--syslog-tag tag: identifier prefixed to syslog messages. By

default ‘STEALTH’)

--time-stamp <type>: the time-stamps to use. By default UTC.

(does not apply to syslog-timestamps)

--verbosity (-V) value: determines the amount of logged information.

Requires --log or --syslog:

0: nothing is logged

1: mode reports and policy commands

2: also: ipc commands and actions

3: also: integrity scan informative messages

policy: location of the policy file

Usage 2 (IPC modes, all options are command-line only):

stealth {--reload,--rerun,--resume,--suspend,--terminate} <uds>

Where:

--reload: reload a stealth process’s policy and skip-file

files

--rerun: start an integrity scan

--resume: resume stealth after --suspend

--suspend: suspend stealth’s activities

to continue: --resume; to end: --terminate

--terminate: terminate the stealth daemon

<uds>: location of the Unix Domain Socket to connect to.

Usage 3 (support mode, all options are command-line only)

stealth {--help,--version}

Where:

--help (-h): provide this help and terminate

--version (-v): show version information and terminate

Note that with the second type of usage the policy file is not required: here only the pidfile must be
specified.

44

Chapter 8

Errormessages

Can’t chdir to ‘path’

the directory path could not be created/used. This may be a permission problem. Check the
permissions of path if path does actually exist. The problem may be in a path component,
not necessarily in the last element of the path.

Can’t open ‘<fname>’ to read (or write)

When a GET or PUT command fails because the target file could not be read or written, stealth
terminates afer logging this message. The file may not exist or you may not not have sufficient
permissions to read or write it.

Corrupt line in policy file: ...

The apparently corrupted line is shown. The line is corrupted if the line could not be split into
an initial word and its remainder. Normally this should not happen. As the line is mentioned,
the message itself should assist you in your repairs.

could not open <logname>

This message is generated when the mentioned log-file cannot be written to. Check the per-
missions of the file, and check if the path to the file exists. The problem may be in a path
component, not necessarily in the last element of the path or in the file itself.

–daemon: missing uds-file or policy file

The –daemon option requires the location for its Unix Domain Socket, and in addition a policy
file must be specified. Most likely the location of the Unix Domain File was omitted, thus
confusing the policy file with the Unix Domain File

incompatible options: ...

Two or more incompatible options are shown. E.g., –daemon is incompatible with IPC options,
which themselves are mutually incompatible. Omit all but one of the mentioned options and
restart stealth

45

Inserting command ‘...’ failed.

the mentioned command could not be sent to a child-process (sh or ssh). Check the availability
of the ssh connection to the client, and whether you have permissions to execute the specified
command.

Invalid –random-interval specified

The –random-interval option was given an invalid (too large or negative) argument.

invalid –<option> specified

The specified option value (e.g., –max-size was specified, but its option value is not a valid
integral number) is not supported

LocalClientSocket::connect(): ...

When running in IPC-mode stealth could not connect to the unix domain socket specified for
the IPC-mode. Check whether the matching stealth daemon exists, and whether the location
of the uds-file was correctly specified

LocalServerSocket::accept(): ...

When running in daemon mode incoming connections could not be accepted. This may have
many causes, and a probably cause is mentioned with the error message

LocalServerSocket::listen(): ...

When running in daemon mode the unix domain socket failed to listen for incoming connec-
tions. This may have many causes, and a probably cause is mentioned with the error message

LocalServerSocket::open(<uds>): ...

When running in daemon mode the unix domain socket could not be opened. A possible reason
is that an entry in the file system having the same name already exists. The error message
will mention a probably cause of the failure

–max-size incompatible with IPC calls

The –max-size option can can only be used when stealth is also receiving a policy file. It
cannot be used in combination with the Inter Process Communication (IPC) options –reload,
–rerun, –resume, –suspend or –terminate.

–max-size <value>: invalid option value

An invalid specification for –max-size was received. Refer to the man-page or manual for
information about valid options.

No exit value for <cmd> ...

46

No exit value was received for the logged command, after which stealth terminates.

–<option> is only valid for a s() foreground process

The indicated option cannot be specified in combination with a –daemon or IPC-option (like
–suspend)

–random-interval requires –repeat

The –random-interval option can only be used when the –repeat option has also been
specified.

–repeat not available in IPC modes

The –repeat option cannot be specified in combination with an IPC-option (like –suspend)

–run-command 0: not a valid (natural) command number

The –run-command option requires an argument, which is a positive, integral value.

–run-command <nr>: invalid command number

The –run-command option requires an argument, which is a positive, integral value at most
equal to the number of commands listed in the policy file.

–skip-files incompatible with IPC calls

The –skip-files option can only be used when stealth is also given a policy file. It can-
not be used in combination with IPC options (–reload, –rerun, –resume, –suspend or
–terminate).

–skip-files: missing skip-file or policy file

The –skip-files option requires a file name and the stealth command also requires a policy
file. Most likely the name of the skip-file was not provided, thus confusing the policy file with
the skip-file.

–stdout incompatible with –daemon

The –stdout option can only be used when stealth is not started as a daemon process.

syslog facility <facility> not supported

The option –syslog-facility requires the name of a standard syslog(1) facility. Supported
facilities are DAEMON, LOCAL0 through LOCAL7 and USER. See, e.g., the syslog(3) man-page for
an overview of their definitions.

–syslog∗ options incompatible with IPC calls

47

–syslog∗ options can can only be used when stealth is also receiving a policy file. It cannot be
used in combination with the Inter Process Communication (IPC) options –reload, –rerun,

–resume, –suspend or –terminate.

syslog priority <priority> not supported

The option –syslog-priority requires the name of a standard syslog(1) priority. All stan-
dard priorities are supported. See, e.g., the syslog(3) man-page for an overview of available
priorities. The prefixes used with the priorities in this man-page (i.e., LOG_ should not be used
when specifying the –syslog-priority. E.g., use –syslog-priority WARNING rather than
–syslog-priority LOG-WARNING)

terminated: non-zero exit value for ‘...’

A local command (not using the CHECK keyword), returned with a non-zero exit. This will
terminate further processing of the policy file. Inspect and/or rerun the command ‘by hand’
to find indications about what went wrong. The report file or the standard error stream may
also contain additional information about the reason of the failure.

Unable to create the logfile ‘...’

the mentioned log file could not be created. Check the permissions of the file, check if the
path to the file exists. The problem may be in a path component, not necessarily in the last
element of the path or in the file itself.

Unix Domain Socket ‘<uds>’: already in use, remove it first

The intended Unix Domain Socket name (<uds>) is already in use. It could be a file that is
or has been used by another process. Either use another name for the unix domain socket, or
remove the existing file-system entry

USE SSH ... entry missing in the policy file

there is no default for the USE SSH specification in the policy file. The specification could not
be found. Provide a specification like:

USE SSH ssh -q root@localhost

48

	Introduction
	What's new in Stealth V.4.01.00

	Installation
	Compiling and installing Stealth

	Granting access
	The monitor's user: creating an ssh-key
	The client's account: accepting ssh from the monitor's user
	Logging into the account@client account
	Using the proper shell

	The `policy' file
	DEFINE directives
	USE directives
	Commands
	LABEL commands
	LOCAL commands
	REMOTE commands
	Preventing Controller Denial of Service (–max-size)

	Running `stealth'
	Installing `stealth'
	Stealth command-line and policy file options
	Rsyslog filtering

	Construct one or more policy files
	DEFINE directives
	USE directives
	Commands
	The complete `policy' file

	Running `stealth' for the first time
	The mailed report
	Files under /root/stealth/client

	Subsequent `stealth' runs
	All files unaltered
	Modifications occurred
	Failing LOCAL commands
	Skipping (some) integrity checks

	Automating repeated `stealth' runs
	Report File Rotation
	Status file cleanup
	Using `logrotate' to control report- and status files

	Kick-starting `stealth'
	Usage info
	Errormessages

