Robust Linear Models

[1]:
%matplotlib inline
[2]:
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
from statsmodels.sandbox.regression.predstd import wls_prediction_std

Estimation

Load data:

[3]:
data = sm.datasets.stackloss.load(as_pandas=False)
data.exog = sm.add_constant(data.exog)

Huber’s T norm with the (default) median absolute deviation scaling

[4]:
huber_t = sm.RLM(data.endog, data.exog, M=sm.robust.norms.HuberT())
hub_results = huber_t.fit()
print(hub_results.params)
print(hub_results.bse)
print(hub_results.summary(yname='y',
            xname=['var_%d' % i for i in range(len(hub_results.params))]))
[-41.02649835   0.82938433   0.92606597  -0.12784672]
[9.79189854 0.11100521 0.30293016 0.12864961]
                    Robust linear Model Regression Results
==============================================================================
Dep. Variable:                      y   No. Observations:                   21
Model:                            RLM   Df Residuals:                       17
Method:                          IRLS   Df Model:                            3
Norm:                          HuberT
Scale Est.:                       mad
Cov Type:                          H1
Date:                Sun, 16 Aug 2020
Time:                        18:00:44
No. Iterations:                    19
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
var_0        -41.0265      9.792     -4.190      0.000     -60.218     -21.835
var_1          0.8294      0.111      7.472      0.000       0.612       1.047
var_2          0.9261      0.303      3.057      0.002       0.332       1.520
var_3         -0.1278      0.129     -0.994      0.320      -0.380       0.124
==============================================================================

If the model instance has been used for another fit with different fit parameters, then the fit options might not be the correct ones anymore .

Huber’s T norm with ‘H2’ covariance matrix

[5]:
hub_results2 = huber_t.fit(cov="H2")
print(hub_results2.params)
print(hub_results2.bse)
[-41.02649835   0.82938433   0.92606597  -0.12784672]
[9.08950419 0.11945975 0.32235497 0.11796313]

Andrew’s Wave norm with Huber’s Proposal 2 scaling and ‘H3’ covariance matrix

[6]:
andrew_mod = sm.RLM(data.endog, data.exog, M=sm.robust.norms.AndrewWave())
andrew_results = andrew_mod.fit(scale_est=sm.robust.scale.HuberScale(), cov="H3")
print('Parameters: ', andrew_results.params)
Parameters:  [-40.8817957    0.79276138   1.04857556  -0.13360865]

See help(sm.RLM.fit) for more options and module sm.robust.scale for scale options

Comparing OLS and RLM

Artificial data with outliers:

[7]:
nsample = 50
x1 = np.linspace(0, 20, nsample)
X = np.column_stack((x1, (x1-5)**2))
X = sm.add_constant(X)
sig = 0.3   # smaller error variance makes OLS<->RLM contrast bigger
beta = [5, 0.5, -0.0]
y_true2 = np.dot(X, beta)
y2 = y_true2 + sig*1. * np.random.normal(size=nsample)
y2[[39,41,43,45,48]] -= 5   # add some outliers (10% of nsample)

Example 1: quadratic function with linear truth

Note that the quadratic term in OLS regression will capture outlier effects.

[8]:
res = sm.OLS(y2, X).fit()
print(res.params)
print(res.bse)
print(res.predict())
[ 5.10536296  0.50471967 -0.01094475]
[0.46491098 0.07177598 0.00635107]
[ 4.83174413  5.08060125  5.32581165  5.56737531  5.80529224  6.03956244
  6.2701859   6.49716264  6.72049264  6.94017591  7.15621245  7.36860226
  7.57734534  7.78244169  7.9838913   8.18169418  8.37585033  8.56635975
  8.75322244  8.9364384   9.11600762  9.29193011  9.46420588  9.6328349
  9.7978172   9.95915277 10.1168416  10.27088371 10.42127908 10.56802772
 10.71112963 10.8505848  10.98639325 11.11855496 11.24706995 11.3719382
 11.49315971 11.6107345  11.72466256 11.83494388 11.94157847 12.04456633
 12.14390746 12.23960186 12.33164953 12.42005046 12.50480467 12.58591214
 12.66337288 12.73718688]

Estimate RLM:

[9]:
resrlm = sm.RLM(y2, X).fit()
print(resrlm.params)
print(resrlm.bse)
[ 5.05151558e+00  4.88800321e-01 -6.26818270e-04]
[0.16126063 0.02489646 0.00220295]

Draw a plot to compare OLS estimates to the robust estimates:

[10]:
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax.plot(x1, y2, 'o',label="data")
ax.plot(x1, y_true2, 'b-', label="True")
prstd, iv_l, iv_u = wls_prediction_std(res)
ax.plot(x1, res.fittedvalues, 'r-', label="OLS")
ax.plot(x1, iv_u, 'r--')
ax.plot(x1, iv_l, 'r--')
ax.plot(x1, resrlm.fittedvalues, 'g.-', label="RLM")
ax.legend(loc="best")
[10]:
<matplotlib.legend.Legend at 0x7fbe37a8fe20>
../../../_images/examples_notebooks_generated_robust_models_0_18_1.png

Example 2: linear function with linear truth

Fit a new OLS model using only the linear term and the constant:

[11]:
X2 = X[:,[0,1]]
res2 = sm.OLS(y2, X2).fit()
print(res2.params)
print(res2.bse)
[5.54650352 0.39527214]
[0.39597165 0.03411852]

Estimate RLM:

[12]:
resrlm2 = sm.RLM(y2, X2).fit()
print(resrlm2.params)
print(resrlm2.bse)
[5.07327213 0.48301984]
[0.13186014 0.0113616 ]

Draw a plot to compare OLS estimates to the robust estimates:

[13]:
prstd, iv_l, iv_u = wls_prediction_std(res2)

fig, ax = plt.subplots(figsize=(8,6))
ax.plot(x1, y2, 'o', label="data")
ax.plot(x1, y_true2, 'b-', label="True")
ax.plot(x1, res2.fittedvalues, 'r-', label="OLS")
ax.plot(x1, iv_u, 'r--')
ax.plot(x1, iv_l, 'r--')
ax.plot(x1, resrlm2.fittedvalues, 'g.-', label="RLM")
legend = ax.legend(loc="best")
../../../_images/examples_notebooks_generated_robust_models_0_24_0.png