Source code for azure.mgmt.signalr.models.metric_specification_py3

# coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
#
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is
# regenerated.
# --------------------------------------------------------------------------

from msrest.serialization import Model


[docs]class MetricSpecification(Model): """Specifications of the Metrics for Azure Monitoring. :param name: Name of the metric. :type name: str :param display_name: Localized friendly display name of the metric. :type display_name: str :param display_description: Localized friendly description of the metric. :type display_description: str :param unit: The unit that makes sense for the metric. :type unit: str :param aggregation_type: Only provide one value for this field. Valid values: Average, Minimum, Maximum, Total, Count. :type aggregation_type: str :param fill_gap_with_zero: Optional. If set to true, then zero will be returned for time duration where no metric is emitted/published. Ex. a metric that returns the number of times a particular error code was emitted. The error code may not appear often, instead of the RP publishing 0, Shoebox can auto fill in 0s for time periods where nothing was emitted. :type fill_gap_with_zero: str :param category: The name of the metric category that the metric belongs to. A metric can only belong to a single category. :type category: str :param dimensions: The dimensions of the metrics. :type dimensions: list[~azure.mgmt.signalr.models.Dimension] """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'display_description': {'key': 'displayDescription', 'type': 'str'}, 'unit': {'key': 'unit', 'type': 'str'}, 'aggregation_type': {'key': 'aggregationType', 'type': 'str'}, 'fill_gap_with_zero': {'key': 'fillGapWithZero', 'type': 'str'}, 'category': {'key': 'category', 'type': 'str'}, 'dimensions': {'key': 'dimensions', 'type': '[Dimension]'}, } def __init__(self, *, name: str=None, display_name: str=None, display_description: str=None, unit: str=None, aggregation_type: str=None, fill_gap_with_zero: str=None, category: str=None, dimensions=None, **kwargs) -> None: super(MetricSpecification, self).__init__(**kwargs) self.name = name self.display_name = display_name self.display_description = display_description self.unit = unit self.aggregation_type = aggregation_type self.fill_gap_with_zero = fill_gap_with_zero self.category = category self.dimensions = dimensions