m should be a monomial map between rings created by buildERing. Such a map can be constructed with buildEMonomialMap but this is not required.
For a map to ring R from ring S, the algorithm infers the entire equivariant map from where m sends the variable orbit generators of S. In particular for each orbit of variables of the form x_{(i_1,...,i_k)}, the image of x_{(0,...,k-1)} is used.
egbToric uses an incremental strategy, computing Gröbner bases for truncations using FourTiTwo. Because of FourTiTwo's efficiency, this strategy tends to be much faster than general equivariant Gröbner basis algorithms such as egb.
In the following example we compute an equivariant Gröbner basis for the vanishing equations of the second Veronese of P^n, i.e. the variety of n x n rank 1 symmetric matrices.
i1 : R = buildERing({symbol x}, {1}, QQ, 2); |
i2 : S = buildERing({symbol y}, {2}, QQ, 2); |
i3 : m = buildEMonomialMap(R,S,{x_0*x_1}) 2 2 o3 = map (R, S, {x , x x , x x , x }) 1 1 0 1 0 0 o3 : RingMap R <--- S |
i4 : G = egbToric(m, OutFile=>stdio) 3 -- used .00171513 seconds -- used .000174077 seconds (9, 9) new stuff found 4 -- used .00300825 seconds -- used .00117421 seconds (16, 26) new stuff found 5 -- used .00715878 seconds -- used .00492477 seconds (25, 60) 6 -- used .0159691 seconds -- used .0121305 seconds (36, 120) 7 -- used .030874 seconds -- used .0404743 seconds (49, 217) 2 o4 = {- y + y , - y y + y , - y y + y y , - y y + 1,0 0,1 1,1 0,0 1,0 2,1 0,0 2,0 1,0 2,1 1,0 ------------------------------------------------------------------------ y y , - y y + y y , - y y + y y , - y y + 2,0 1,1 2,2 1,0 2,1 2,0 3,2 1,0 3,0 2,1 3,2 1,0 ------------------------------------------------------------------------ y y } 3,1 2,0 o4 : List |
It is not checked if m is equivariant. Only the images of the orbit generators of the source ring are examined and the rest of the map ignored.
The object egbToric is a method function with options.