Libav
cavs.c
Go to the documentation of this file.
1 /*
2  * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3  * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
28 #include "avcodec.h"
29 #include "get_bits.h"
30 #include "golomb.h"
31 #include "h264chroma.h"
32 #include "idctdsp.h"
33 #include "internal.h"
34 #include "mathops.h"
35 #include "qpeldsp.h"
36 #include "cavs.h"
37 
38 static const uint8_t alpha_tab[64] = {
39  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3,
40  4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
41  22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44,
42  46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
43 };
44 
45 static const uint8_t beta_tab[64] = {
46  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
47  2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
48  6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14,
49  15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27
50 };
51 
52 static const uint8_t tc_tab[64] = {
53  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
54  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
55  2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
56  5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
57 };
58 
61 static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL };
62 
63 static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 };
64 static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 };
65 static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 };
66 static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 };
67 
68 /*****************************************************************************
69  *
70  * in-loop deblocking filter
71  *
72  ****************************************************************************/
73 
74 static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
75 {
76  if ((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
77  return 2;
78  if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
79  return 1;
80  if (b) {
81  mvP += MV_BWD_OFFS;
82  mvQ += MV_BWD_OFFS;
83  if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
84  return 1;
85  } else {
86  if (mvP->ref != mvQ->ref)
87  return 1;
88  }
89  return 0;
90 }
91 
92 #define SET_PARAMS \
93  alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)]; \
94  beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0, 63)]; \
95  tc = tc_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)];
96 
109 void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
110 {
111  uint8_t bs[8];
112  int qp_avg, alpha, beta, tc;
113  int i;
114 
115  /* save un-deblocked lines */
116  h->topleft_border_y = h->top_border_y[h->mbx * 16 + 15];
117  h->topleft_border_u = h->top_border_u[h->mbx * 10 + 8];
118  h->topleft_border_v = h->top_border_v[h->mbx * 10 + 8];
119  memcpy(&h->top_border_y[h->mbx * 16], h->cy + 15 * h->l_stride, 16);
120  memcpy(&h->top_border_u[h->mbx * 10 + 1], h->cu + 7 * h->c_stride, 8);
121  memcpy(&h->top_border_v[h->mbx * 10 + 1], h->cv + 7 * h->c_stride, 8);
122  for (i = 0; i < 8; i++) {
123  h->left_border_y[i * 2 + 1] = *(h->cy + 15 + (i * 2 + 0) * h->l_stride);
124  h->left_border_y[i * 2 + 2] = *(h->cy + 15 + (i * 2 + 1) * h->l_stride);
125  h->left_border_u[i + 1] = *(h->cu + 7 + i * h->c_stride);
126  h->left_border_v[i + 1] = *(h->cv + 7 + i * h->c_stride);
127  }
128  if (!h->loop_filter_disable) {
129  /* determine bs */
130  if (mb_type == I_8X8)
131  memset(bs, 2, 8);
132  else {
133  memset(bs, 0, 8);
134  if (ff_cavs_partition_flags[mb_type] & SPLITV) {
135  bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
136  bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
137  }
138  if (ff_cavs_partition_flags[mb_type] & SPLITH) {
139  bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
140  bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
141  }
142  bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
143  bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
144  bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
145  bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
146  }
147  if (AV_RN64(bs)) {
148  if (h->flags & A_AVAIL) {
149  qp_avg = (h->qp + h->left_qp + 1) >> 1;
150  SET_PARAMS;
151  h->cdsp.cavs_filter_lv(h->cy, h->l_stride, alpha, beta, tc, bs[0], bs[1]);
152  h->cdsp.cavs_filter_cv(h->cu, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
153  h->cdsp.cavs_filter_cv(h->cv, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
154  }
155  qp_avg = h->qp;
156  SET_PARAMS;
157  h->cdsp.cavs_filter_lv(h->cy + 8, h->l_stride, alpha, beta, tc, bs[2], bs[3]);
158  h->cdsp.cavs_filter_lh(h->cy + 8 * h->l_stride, h->l_stride, alpha, beta, tc, bs[6], bs[7]);
159 
160  if (h->flags & B_AVAIL) {
161  qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
162  SET_PARAMS;
163  h->cdsp.cavs_filter_lh(h->cy, h->l_stride, alpha, beta, tc, bs[4], bs[5]);
164  h->cdsp.cavs_filter_ch(h->cu, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
165  h->cdsp.cavs_filter_ch(h->cv, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
166  }
167  }
168  }
169  h->left_qp = h->qp;
170  h->top_qp[h->mbx] = h->qp;
171 }
172 
173 #undef SET_PARAMS
174 
175 /*****************************************************************************
176  *
177  * spatial intra prediction
178  *
179  ****************************************************************************/
180 
182  uint8_t **left, int block)
183 {
184  int i;
185 
186  switch (block) {
187  case 0:
188  *left = h->left_border_y;
189  h->left_border_y[0] = h->left_border_y[1];
190  memset(&h->left_border_y[17], h->left_border_y[16], 9);
191  memcpy(&top[1], &h->top_border_y[h->mbx * 16], 16);
192  top[17] = top[16];
193  top[0] = top[1];
194  if ((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
195  h->left_border_y[0] = top[0] = h->topleft_border_y;
196  break;
197  case 1:
198  *left = h->intern_border_y;
199  for (i = 0; i < 8; i++)
200  h->intern_border_y[i + 1] = *(h->cy + 7 + i * h->l_stride);
201  memset(&h->intern_border_y[9], h->intern_border_y[8], 9);
202  h->intern_border_y[0] = h->intern_border_y[1];
203  memcpy(&top[1], &h->top_border_y[h->mbx * 16 + 8], 8);
204  if (h->flags & C_AVAIL)
205  memcpy(&top[9], &h->top_border_y[(h->mbx + 1) * 16], 8);
206  else
207  memset(&top[9], top[8], 9);
208  top[17] = top[16];
209  top[0] = top[1];
210  if (h->flags & B_AVAIL)
211  h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx * 16 + 7];
212  break;
213  case 2:
214  *left = &h->left_border_y[8];
215  memcpy(&top[1], h->cy + 7 * h->l_stride, 16);
216  top[17] = top[16];
217  top[0] = top[1];
218  if (h->flags & A_AVAIL)
219  top[0] = h->left_border_y[8];
220  break;
221  case 3:
222  *left = &h->intern_border_y[8];
223  for (i = 0; i < 8; i++)
224  h->intern_border_y[i + 9] = *(h->cy + 7 + (i + 8) * h->l_stride);
225  memset(&h->intern_border_y[17], h->intern_border_y[16], 9);
226  memcpy(&top[0], h->cy + 7 + 7 * h->l_stride, 9);
227  memset(&top[9], top[8], 9);
228  break;
229  }
230 }
231 
233 {
234  /* extend borders by one pixel */
235  h->left_border_u[9] = h->left_border_u[8];
236  h->left_border_v[9] = h->left_border_v[8];
237  h->top_border_u[h->mbx * 10 + 9] = h->top_border_u[h->mbx * 10 + 8];
238  h->top_border_v[h->mbx * 10 + 9] = h->top_border_v[h->mbx * 10 + 8];
239  if (h->mbx && h->mby) {
240  h->top_border_u[h->mbx * 10] = h->left_border_u[0] = h->topleft_border_u;
241  h->top_border_v[h->mbx * 10] = h->left_border_v[0] = h->topleft_border_v;
242  } else {
243  h->left_border_u[0] = h->left_border_u[1];
244  h->left_border_v[0] = h->left_border_v[1];
245  h->top_border_u[h->mbx * 10] = h->top_border_u[h->mbx * 10 + 1];
246  h->top_border_v[h->mbx * 10] = h->top_border_v[h->mbx * 10 + 1];
247  }
248 }
249 
250 static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
251 {
252  int y;
253  uint64_t a = AV_RN64(&top[1]);
254  for (y = 0; y < 8; y++)
255  *((uint64_t *)(d + y * stride)) = a;
256 }
257 
258 static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
259 {
260  int y;
261  uint64_t a;
262  for (y = 0; y < 8; y++) {
263  a = left[y + 1] * 0x0101010101010101ULL;
264  *((uint64_t *)(d + y * stride)) = a;
265  }
266 }
267 
268 static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
269 {
270  int y;
271  uint64_t a = 0x8080808080808080ULL;
272  for (y = 0; y < 8; y++)
273  *((uint64_t *)(d + y * stride)) = a;
274 }
275 
276 static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
277 {
278  int x, y, ia;
279  int ih = 0;
280  int iv = 0;
281  const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
282 
283  for (x = 0; x < 4; x++) {
284  ih += (x + 1) * (top[5 + x] - top[3 - x]);
285  iv += (x + 1) * (left[5 + x] - left[3 - x]);
286  }
287  ia = (top[8] + left[8]) << 4;
288  ih = (17 * ih + 16) >> 5;
289  iv = (17 * iv + 16) >> 5;
290  for (y = 0; y < 8; y++)
291  for (x = 0; x < 8; x++)
292  d[y * stride + x] = cm[(ia + (x - 3) * ih + (y - 3) * iv + 16) >> 5];
293 }
294 
295 #define LOWPASS(ARRAY, INDEX) \
296  ((ARRAY[(INDEX) - 1] + 2 * ARRAY[(INDEX)] + ARRAY[(INDEX) + 1] + 2) >> 2)
297 
298 static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
299 {
300  int x, y;
301  for (y = 0; y < 8; y++)
302  for (x = 0; x < 8; x++)
303  d[y * stride + x] = (LOWPASS(top, x + 1) + LOWPASS(left, y + 1)) >> 1;
304 }
305 
306 static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
307 {
308  int x, y;
309  for (y = 0; y < 8; y++)
310  for (x = 0; x < 8; x++)
311  d[y * stride + x] = (LOWPASS(top, x + y + 2) + LOWPASS(left, x + y + 2)) >> 1;
312 }
313 
314 static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
315 {
316  int x, y;
317  for (y = 0; y < 8; y++)
318  for (x = 0; x < 8; x++)
319  if (x == y)
320  d[y * stride + x] = (left[1] + 2 * top[0] + top[1] + 2) >> 2;
321  else if (x > y)
322  d[y * stride + x] = LOWPASS(top, x - y);
323  else
324  d[y * stride + x] = LOWPASS(left, y - x);
325 }
326 
327 static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
328 {
329  int x, y;
330  for (y = 0; y < 8; y++)
331  for (x = 0; x < 8; x++)
332  d[y * stride + x] = LOWPASS(left, y + 1);
333 }
334 
335 static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
336 {
337  int x, y;
338  for (y = 0; y < 8; y++)
339  for (x = 0; x < 8; x++)
340  d[y * stride + x] = LOWPASS(top, x + 1);
341 }
342 
343 #undef LOWPASS
344 
345 static inline void modify_pred(const int8_t *mod_table, int *mode)
346 {
347  *mode = mod_table[*mode];
348  if (*mode < 0) {
349  av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
350  *mode = 0;
351  }
352 }
353 
354 void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
355 {
356  /* save pred modes before they get modified */
357  h->pred_mode_Y[3] = h->pred_mode_Y[5];
358  h->pred_mode_Y[6] = h->pred_mode_Y[8];
359  h->top_pred_Y[h->mbx * 2 + 0] = h->pred_mode_Y[7];
360  h->top_pred_Y[h->mbx * 2 + 1] = h->pred_mode_Y[8];
361 
362  /* modify pred modes according to availability of neighbour samples */
363  if (!(h->flags & A_AVAIL)) {
366  modify_pred(left_modifier_c, pred_mode_uv);
367  }
368  if (!(h->flags & B_AVAIL)) {
371  modify_pred(top_modifier_c, pred_mode_uv);
372  }
373 }
374 
375 /*****************************************************************************
376  *
377  * motion compensation
378  *
379  ****************************************************************************/
380 
381 static inline void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height,
382  int delta, int list, uint8_t *dest_y,
383  uint8_t *dest_cb, uint8_t *dest_cr,
384  int src_x_offset, int src_y_offset,
385  qpel_mc_func *qpix_op,
386  h264_chroma_mc_func chroma_op, cavs_vector *mv)
387 {
388  const int mx = mv->x + src_x_offset * 8;
389  const int my = mv->y + src_y_offset * 8;
390  const int luma_xy = (mx & 3) + ((my & 3) << 2);
391  uint8_t *src_y = pic->data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
392  uint8_t *src_cb = pic->data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
393  uint8_t *src_cr = pic->data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
394  int extra_width = 0;
395  int extra_height = extra_width;
396  const int full_mx = mx >> 2;
397  const int full_my = my >> 2;
398  const int pic_width = 16 * h->mb_width;
399  const int pic_height = 16 * h->mb_height;
400  int emu = 0;
401 
402  if (!pic->data[0])
403  return;
404  if (mx & 7)
405  extra_width -= 3;
406  if (my & 7)
407  extra_height -= 3;
408 
409  if (full_mx < 0 - extra_width ||
410  full_my < 0 - extra_height ||
411  full_mx + 16 /* FIXME */ > pic_width + extra_width ||
412  full_my + 16 /* FIXME */ > pic_height + extra_height) {
414  src_y - 2 - 2 * h->l_stride,
415  h->l_stride, h->l_stride,
416  16 + 5, 16 + 5 /* FIXME */,
417  full_mx - 2, full_my - 2,
418  pic_width, pic_height);
419  src_y = h->edge_emu_buffer + 2 + 2 * h->l_stride;
420  emu = 1;
421  }
422 
423  // FIXME try variable height perhaps?
424  qpix_op[luma_xy](dest_y, src_y, h->l_stride);
425 
426  if (emu) {
427  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb,
428  h->c_stride, h->c_stride,
429  9, 9 /* FIXME */,
430  mx >> 3, my >> 3,
431  pic_width >> 1, pic_height >> 1);
432  src_cb = h->edge_emu_buffer;
433  }
434  chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx & 7, my & 7);
435 
436  if (emu) {
437  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr,
438  h->c_stride, h->c_stride,
439  9, 9 /* FIXME */,
440  mx >> 3, my >> 3,
441  pic_width >> 1, pic_height >> 1);
442  src_cr = h->edge_emu_buffer;
443  }
444  chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx & 7, my & 7);
445 }
446 
447 static inline void mc_part_std(AVSContext *h, int chroma_height, int delta,
448  uint8_t *dest_y,
449  uint8_t *dest_cb,
450  uint8_t *dest_cr,
451  int x_offset, int y_offset,
452  qpel_mc_func *qpix_put,
453  h264_chroma_mc_func chroma_put,
454  qpel_mc_func *qpix_avg,
455  h264_chroma_mc_func chroma_avg,
456  cavs_vector *mv)
457 {
458  qpel_mc_func *qpix_op = qpix_put;
459  h264_chroma_mc_func chroma_op = chroma_put;
460 
461  dest_y += x_offset * 2 + y_offset * h->l_stride * 2;
462  dest_cb += x_offset + y_offset * h->c_stride;
463  dest_cr += x_offset + y_offset * h->c_stride;
464  x_offset += 8 * h->mbx;
465  y_offset += 8 * h->mby;
466 
467  if (mv->ref >= 0) {
468  AVFrame *ref = h->DPB[mv->ref].f;
469  mc_dir_part(h, ref, chroma_height, delta, 0,
470  dest_y, dest_cb, dest_cr, x_offset, y_offset,
471  qpix_op, chroma_op, mv);
472 
473  qpix_op = qpix_avg;
474  chroma_op = chroma_avg;
475  }
476 
477  if ((mv + MV_BWD_OFFS)->ref >= 0) {
478  AVFrame *ref = h->DPB[0].f;
479  mc_dir_part(h, ref, chroma_height, delta, 1,
480  dest_y, dest_cb, dest_cr, x_offset, y_offset,
481  qpix_op, chroma_op, mv + MV_BWD_OFFS);
482  }
483 }
484 
485 void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
486 {
487  if (ff_cavs_partition_flags[mb_type] == 0) { // 16x16
488  mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0,
493  &h->mv[MV_FWD_X0]);
494  } else {
495  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0,
500  &h->mv[MV_FWD_X0]);
501  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0,
506  &h->mv[MV_FWD_X1]);
507  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4,
512  &h->mv[MV_FWD_X2]);
513  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4,
518  &h->mv[MV_FWD_X3]);
519  }
520 }
521 
522 /*****************************************************************************
523  *
524  * motion vector prediction
525  *
526  ****************************************************************************/
527 
528 static inline void scale_mv(AVSContext *h, int *d_x, int *d_y,
529  cavs_vector *src, int distp)
530 {
531  int den = h->scale_den[src->ref];
532 
533  *d_x = (src->x * distp * den + 256 + FF_SIGNBIT(src->x)) >> 9;
534  *d_y = (src->y * distp * den + 256 + FF_SIGNBIT(src->y)) >> 9;
535 }
536 
537 static inline void mv_pred_median(AVSContext *h,
538  cavs_vector *mvP,
539  cavs_vector *mvA,
540  cavs_vector *mvB,
541  cavs_vector *mvC)
542 {
543  int ax, ay, bx, by, cx, cy;
544  int len_ab, len_bc, len_ca, len_mid;
545 
546  /* scale candidates according to their temporal span */
547  scale_mv(h, &ax, &ay, mvA, mvP->dist);
548  scale_mv(h, &bx, &by, mvB, mvP->dist);
549  scale_mv(h, &cx, &cy, mvC, mvP->dist);
550  /* find the geometrical median of the three candidates */
551  len_ab = abs(ax - bx) + abs(ay - by);
552  len_bc = abs(bx - cx) + abs(by - cy);
553  len_ca = abs(cx - ax) + abs(cy - ay);
554  len_mid = mid_pred(len_ab, len_bc, len_ca);
555  if (len_mid == len_ab) {
556  mvP->x = cx;
557  mvP->y = cy;
558  } else if (len_mid == len_bc) {
559  mvP->x = ax;
560  mvP->y = ay;
561  } else {
562  mvP->x = bx;
563  mvP->y = by;
564  }
565 }
566 
567 void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC,
568  enum cavs_mv_pred mode, enum cavs_block size, int ref)
569 {
570  cavs_vector *mvP = &h->mv[nP];
571  cavs_vector *mvA = &h->mv[nP-1];
572  cavs_vector *mvB = &h->mv[nP-4];
573  cavs_vector *mvC = &h->mv[nC];
574  const cavs_vector *mvP2 = NULL;
575 
576  mvP->ref = ref;
577  mvP->dist = h->dist[mvP->ref];
578  if (mvC->ref == NOT_AVAIL)
579  mvC = &h->mv[nP - 5]; // set to top-left (mvD)
580  if (mode == MV_PRED_PSKIP &&
581  (mvA->ref == NOT_AVAIL ||
582  mvB->ref == NOT_AVAIL ||
583  (mvA->x | mvA->y | mvA->ref) == 0 ||
584  (mvB->x | mvB->y | mvB->ref) == 0)) {
585  mvP2 = &un_mv;
586  /* if there is only one suitable candidate, take it */
587  } else if (mvA->ref >= 0 && mvB->ref < 0 && mvC->ref < 0) {
588  mvP2 = mvA;
589  } else if (mvA->ref < 0 && mvB->ref >= 0 && mvC->ref < 0) {
590  mvP2 = mvB;
591  } else if (mvA->ref < 0 && mvB->ref < 0 && mvC->ref >= 0) {
592  mvP2 = mvC;
593  } else if (mode == MV_PRED_LEFT && mvA->ref == ref) {
594  mvP2 = mvA;
595  } else if (mode == MV_PRED_TOP && mvB->ref == ref) {
596  mvP2 = mvB;
597  } else if (mode == MV_PRED_TOPRIGHT && mvC->ref == ref) {
598  mvP2 = mvC;
599  }
600  if (mvP2) {
601  mvP->x = mvP2->x;
602  mvP->y = mvP2->y;
603  } else
604  mv_pred_median(h, mvP, mvA, mvB, mvC);
605 
606  if (mode < MV_PRED_PSKIP) {
607  mvP->x += get_se_golomb(&h->gb);
608  mvP->y += get_se_golomb(&h->gb);
609  }
610  set_mvs(mvP, size);
611 }
612 
613 /*****************************************************************************
614  *
615  * macroblock level
616  *
617  ****************************************************************************/
618 
623 {
624  int i;
625 
626  /* copy predictors from top line (MB B and C) into cache */
627  for (i = 0; i < 3; i++) {
628  h->mv[MV_FWD_B2 + i] = h->top_mv[0][h->mbx * 2 + i];
629  h->mv[MV_BWD_B2 + i] = h->top_mv[1][h->mbx * 2 + i];
630  }
631  h->pred_mode_Y[1] = h->top_pred_Y[h->mbx * 2 + 0];
632  h->pred_mode_Y[2] = h->top_pred_Y[h->mbx * 2 + 1];
633  /* clear top predictors if MB B is not available */
634  if (!(h->flags & B_AVAIL)) {
635  h->mv[MV_FWD_B2] = un_mv;
636  h->mv[MV_FWD_B3] = un_mv;
637  h->mv[MV_BWD_B2] = un_mv;
638  h->mv[MV_BWD_B3] = un_mv;
639  h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
640  h->flags &= ~(C_AVAIL | D_AVAIL);
641  } else if (h->mbx) {
642  h->flags |= D_AVAIL;
643  }
644  if (h->mbx == h->mb_width - 1) // MB C not available
645  h->flags &= ~C_AVAIL;
646  /* clear top-right predictors if MB C is not available */
647  if (!(h->flags & C_AVAIL)) {
648  h->mv[MV_FWD_C2] = un_mv;
649  h->mv[MV_BWD_C2] = un_mv;
650  }
651  /* clear top-left predictors if MB D is not available */
652  if (!(h->flags & D_AVAIL)) {
653  h->mv[MV_FWD_D3] = un_mv;
654  h->mv[MV_BWD_D3] = un_mv;
655  }
656 }
657 
664 {
665  int i;
666 
667  h->flags |= A_AVAIL;
668  h->cy += 16;
669  h->cu += 8;
670  h->cv += 8;
671  /* copy mvs as predictors to the left */
672  for (i = 0; i <= 20; i += 4)
673  h->mv[i] = h->mv[i + 2];
674  /* copy bottom mvs from cache to top line */
675  h->top_mv[0][h->mbx * 2 + 0] = h->mv[MV_FWD_X2];
676  h->top_mv[0][h->mbx * 2 + 1] = h->mv[MV_FWD_X3];
677  h->top_mv[1][h->mbx * 2 + 0] = h->mv[MV_BWD_X2];
678  h->top_mv[1][h->mbx * 2 + 1] = h->mv[MV_BWD_X3];
679  /* next MB address */
680  h->mbidx++;
681  h->mbx++;
682  if (h->mbx == h->mb_width) { // New mb line
683  h->flags = B_AVAIL | C_AVAIL;
684  /* clear left pred_modes */
685  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
686  /* clear left mv predictors */
687  for (i = 0; i <= 20; i += 4)
688  h->mv[i] = un_mv;
689  h->mbx = 0;
690  h->mby++;
691  /* re-calculate sample pointers */
692  h->cy = h->cur.f->data[0] + h->mby * 16 * h->l_stride;
693  h->cu = h->cur.f->data[1] + h->mby * 8 * h->c_stride;
694  h->cv = h->cur.f->data[2] + h->mby * 8 * h->c_stride;
695  if (h->mby == h->mb_height) { // Frame end
696  return 0;
697  }
698  }
699  return 1;
700 }
701 
702 /*****************************************************************************
703  *
704  * frame level
705  *
706  ****************************************************************************/
707 
709 {
710  int i;
711 
712  /* clear some predictors */
713  for (i = 0; i <= 20; i += 4)
714  h->mv[i] = un_mv;
716  set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
718  set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
719  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
720  h->cy = h->cur.f->data[0];
721  h->cu = h->cur.f->data[1];
722  h->cv = h->cur.f->data[2];
723  h->l_stride = h->cur.f->linesize[0];
724  h->c_stride = h->cur.f->linesize[1];
725  h->luma_scan[2] = 8 * h->l_stride;
726  h->luma_scan[3] = 8 * h->l_stride + 8;
727  h->mbx = h->mby = h->mbidx = 0;
728  h->flags = 0;
729 }
730 
731 /*****************************************************************************
732  *
733  * headers and interface
734  *
735  ****************************************************************************/
736 
743 {
744  /* alloc top line of predictors */
745  h->top_qp = av_mallocz(h->mb_width);
746  h->top_mv[0] = av_mallocz((h->mb_width * 2 + 1) * sizeof(cavs_vector));
747  h->top_mv[1] = av_mallocz((h->mb_width * 2 + 1) * sizeof(cavs_vector));
748  h->top_pred_Y = av_mallocz(h->mb_width * 2 * sizeof(*h->top_pred_Y));
749  h->top_border_y = av_mallocz((h->mb_width + 1) * 16);
750  h->top_border_u = av_mallocz(h->mb_width * 10);
751  h->top_border_v = av_mallocz(h->mb_width * 10);
752 
753  /* alloc space for co-located MVs and types */
754  h->col_mv = av_mallocz(h->mb_width * h->mb_height * 4 *
755  sizeof(cavs_vector));
757  h->block = av_mallocz(64 * sizeof(int16_t));
758 }
759 
761 {
762  AVSContext *h = avctx->priv_data;
763 
764  ff_blockdsp_init(&h->bdsp, avctx);
766  ff_idctdsp_init(&h->idsp, avctx);
767  ff_videodsp_init(&h->vdsp, 8);
768  ff_cavsdsp_init(&h->cdsp, avctx);
770  h->cdsp.idct_perm);
772 
773  h->avctx = avctx;
774  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
775 
776  h->cur.f = av_frame_alloc();
777  h->DPB[0].f = av_frame_alloc();
778  h->DPB[1].f = av_frame_alloc();
779  if (!h->cur.f || !h->DPB[0].f || !h->DPB[1].f) {
780  ff_cavs_end(avctx);
781  return AVERROR(ENOMEM);
782  }
783 
784  h->luma_scan[0] = 0;
785  h->luma_scan[1] = 8;
801  h->mv[7] = un_mv;
802  h->mv[19] = un_mv;
803  return 0;
804 }
805 
807 {
808  AVSContext *h = avctx->priv_data;
809 
810  av_frame_free(&h->cur.f);
811  av_frame_free(&h->DPB[0].f);
812  av_frame_free(&h->DPB[1].f);
813 
814  av_free(h->top_qp);
815  av_free(h->top_mv[0]);
816  av_free(h->top_mv[1]);
817  av_free(h->top_pred_Y);
818  av_free(h->top_border_y);
819  av_free(h->top_border_u);
820  av_free(h->top_border_v);
821  av_free(h->col_mv);
823  av_free(h->block);
825  return 0;
826 }
cavs_mv_loc
Definition: cavs.h:120
void(* intra_pred_c[7])(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.h:230
uint8_t * top_border_v
Definition: cavs.h:224
uint8_t * top_border_u
Definition: cavs.h:224
void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
Definition: cavs.c:354
uint8_t topleft_border_y
Definition: cavs.h:227
AVCodecContext * avctx
Definition: cavs.h:164
int size
This structure describes decoded (raw) audio or video data.
Definition: frame.h:135
uint8_t * edge_emu_buffer
Definition: cavs.h:238
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:179
void(* cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:35
static int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
Definition: cavs.c:74
static const int8_t left_modifier_c[7]
Definition: cavs.c:65
Definition: cavs.h:62
int16_t x
Definition: cavs.h:144
av_cold int ff_cavs_end(AVCodecContext *avctx)
Definition: cavs.c:806
int mbidx
macroblock coordinates
Definition: cavs.h:186
void(* cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:33
static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:335
cavs_vector * col_mv
Definition: cavs.h:207
#define MAX_NEG_CROP
Definition: mathops.h:30
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1254
#define A_AVAIL
Definition: cavs.h:39
void ff_cavs_init_mb(AVSContext *h)
initialise predictors for motion vectors and intra prediction
Definition: cavs.c:622
void(* qpel_mc_func)(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
Definition: qpeldsp.h:65
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
Definition: h264chroma.c:39
int qp
Definition: cavs.h:217
int loop_filter_disable
Definition: cavs.h:183
int stride
Definition: mace.c:144
void(* cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:34
int left_qp
Definition: cavs.h:190
uint8_t intern_border_y[26]
Definition: cavs.h:226
void av_freep(void *arg)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc() and set the pointer ...
Definition: mem.c:198
cavs_mb
Definition: cavs.h:61
#define MV_BWD_OFFS
Definition: cavs.h:58
int mbx
Definition: cavs.h:186
ScanTable scantable
Definition: cavs.h:220
uint8_t
#define av_cold
Definition: attributes.h:66
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:57
float delta
#define SPLITH
Definition: cavs.h:55
uint8_t * top_qp
Definition: cavs.h:191
static const int8_t left_modifier_l[8]
Definition: cavs.c:63
#define b
Definition: input.c:52
uint8_t * top_border_y
intra prediction is done with un-deblocked samples they are saved here before deblocking the MB ...
Definition: cavs.h:224
av_cold void ff_cavsdsp_init(CAVSDSPContext *c, AVCodecContext *avctx)
Definition: cavsdsp.c:537
cavs_vector mv[2 *4 *3]
mv motion vector cache 0: D3 B2 B3 C2 4: A1 X0 X1 - 8: A3 X2 X3 -
Definition: cavs.h:205
quarterpel DSP functions
cavs_vector * top_mv[2]
Definition: cavs.h:206
static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:276
bitstream reader API header.
void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
in-loop deblocking filter for a single macroblock
Definition: cavs.c:109
int dist[2]
temporal distances from current frame to ref frames
Definition: cavs.h:173
int mby
Definition: cavs.h:186
GetBitContext gb
Definition: cavs.h:170
uint8_t * cy
Definition: cavs.h:189
#define cm
Definition: dvbsubdec.c:34
#define D_AVAIL
Definition: cavs.h:42
static void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp)
Definition: cavs.c:528
uint8_t topleft_border_u
Definition: cavs.h:227
static void mv_pred_median(AVSContext *h, cavs_vector *mvP, cavs_vector *mvA, cavs_vector *mvB, cavs_vector *mvC)
Definition: cavs.c:537
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:123
void av_free(void *ptr)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc(). ...
Definition: mem.c:186
uint8_t * cu
Definition: cavs.h:189
Definition: cavs.h:67
int scale_den[2]
for scaling neighbouring MVs
Definition: cavs.h:236
AVSFrame cur
currently decoded frame
Definition: cavs.h:171
#define SET_PARAMS
Definition: cavs.c:92
int ff_cavs_next_mb(AVSContext *h)
save predictors for later macroblocks and increase macroblock address
Definition: cavs.c:663
#define FF_SIGNBIT(x)
Definition: internal.h:38
#define AVERROR(e)
Definition: error.h:43
void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
Definition: cavs.c:485
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:69
CAVSDSPContext cdsp
Definition: cavs.h:169
static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:268
uint8_t left_border_y[26]
Definition: cavs.h:225
#define C_AVAIL
Definition: cavs.h:41
void av_log(void *avcl, int level, const char *fmt,...)
Definition: log.c:168
static const uint8_t beta_tab[64]
Definition: cavs.c:45
void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top, uint8_t **left, int block)
Definition: cavs.c:181
static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:327
AVSFrame DPB[2]
reference frames
Definition: cavs.h:172
static const int8_t top_modifier_c[7]
Definition: cavs.c:66
#define B_AVAIL
Definition: cavs.h:40
uint8_t * cv
current MB sample pointers
Definition: cavs.h:189
void ff_cavs_load_intra_pred_chroma(AVSContext *h)
Definition: cavs.c:232
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:37
static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:258
void ff_cavs_init_pic(AVSContext *h)
Definition: cavs.c:708
qpel_mc_func put_cavs_qpel_pixels_tab[2][16]
Definition: cavsdsp.h:31
#define NOT_AVAIL
Definition: cavs.h:43
av_cold int ff_cavs_init(AVCodecContext *avctx)
Definition: cavs.c:760
av_cold void ff_init_scantable_permutation(uint8_t *idct_permutation, enum idct_permutation_type perm_type)
Definition: idctdsp.c:49
int16_t dist
Definition: cavs.h:146
uint8_t left_border_u[10]
Definition: cavs.h:225
static const uint8_t tc_tab[64]
Definition: cavs.c:52
const uint8_t ff_cavs_partition_flags[30]
Definition: cavsdata.c:24
int16_t * block
Definition: cavs.h:241
void ff_cavs_init_top_lines(AVSContext *h)
some predictions require data from the top-neighbouring macroblock.
Definition: cavs.c:742
void(* intra_pred_l[8])(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.h:229
const cavs_vector ff_cavs_dir_mv
mark block as "no prediction from this direction" e.g.
Definition: cavsdata.c:59
uint8_t idct_permutation[64]
IDCT input permutation.
Definition: idctdsp.h:94
h264_chroma_mc_func avg_h264_chroma_pixels_tab[3]
Definition: h264chroma.h:28
uint8_t left_border_v[10]
Definition: cavs.h:225
void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC, enum cavs_mv_pred mode, enum cavs_block size, int ref)
Definition: cavs.c:567
static void modify_pred(const int8_t *mod_table, int *mode)
Definition: cavs.c:345
if(ac->has_optimized_func)
static const int8_t mv[256][2]
Definition: 4xm.c:75
NULL
Definition: eval.c:55
Libavcodec external API header.
static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:298
av_cold void ff_blockdsp_init(BlockDSPContext *c, AVCodecContext *avctx)
Definition: blockdsp.c:58
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:153
main external API structure.
Definition: avcodec.h:1050
static void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height, int delta, int list, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int src_x_offset, int src_y_offset, qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op, cavs_vector *mv)
Definition: cavs.c:381
int pred_mode_Y[3 *3]
luma pred mode cache 0: – B2 B3 3: A1 X0 X1 6: A3 X2 X3
Definition: cavs.h:213
cavs_block
Definition: cavs.h:113
#define SPLITV
Definition: cavs.h:56
int * top_pred_Y
Definition: cavs.h:214
static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:306
int idct_perm
Definition: cavsdsp.h:38
int16_t ref
Definition: cavs.h:147
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:115
#define mid_pred
Definition: mathops.h:98
qpel_mc_func avg_cavs_qpel_pixels_tab[2][16]
Definition: cavsdsp.h:32
ptrdiff_t c_stride
Definition: cavs.h:215
#define LOWPASS(ARRAY, INDEX)
Definition: cavs.c:295
uint8_t topleft_border_v
Definition: cavs.h:227
BlockDSPContext bdsp
Definition: cavs.h:165
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:141
void(* h264_chroma_mc_func)(uint8_t *dst, uint8_t *src, int srcStride, int h, int x, int y)
Definition: h264chroma.h:24
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:65
common internal api header.
static const int8_t top_modifier_l[8]
Definition: cavs.c:64
cavs_mv_pred
Definition: cavs.h:104
int flags
availability flags of neighbouring macroblocks
Definition: cavs.h:187
ptrdiff_t l_stride
Definition: cavs.h:215
#define ff_crop_tab
int luma_scan[4]
Definition: cavs.h:216
int mb_height
Definition: cavs.h:177
static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:250
void * priv_data
Definition: avcodec.h:1092
h264_chroma_mc_func put_h264_chroma_pixels_tab[3]
Definition: h264chroma.h:27
av_cold void ff_init_scantable(uint8_t *permutation, ScanTable *st, const uint8_t *src_scantable)
Definition: idctdsp.c:28
#define REF_INTRA
Definition: cavs.h:44
av_cold void ff_idctdsp_init(IDCTDSPContext *c, AVCodecContext *avctx)
Definition: idctdsp.c:156
static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:314
#define AV_RN64(p)
Definition: intreadwrite.h:330
static const cavs_vector un_mv
mark block as unavailable, i.e.
Definition: cavs.c:61
static void set_mvs(cavs_vector *mv, enum cavs_block size)
Definition: cavs.h:248
IDCTDSPContext idsp
Definition: cavs.h:167
void(* cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:36
int16_t y
Definition: cavs.h:145
VideoDSPContext vdsp
Definition: cavs.h:168
exp golomb vlc stuff
H264ChromaContext h264chroma
Definition: cavs.h:166
void(* emulated_edge_mc)(uint8_t *buf, const uint8_t *src, ptrdiff_t buf_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:52
static const uint8_t alpha_tab[64]
Definition: cavs.c:38
void * av_mallocz(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:205
int mb_width
Definition: cavs.h:177
AVFrame * f
Definition: cavs.h:159
uint8_t * col_type_base
Definition: cavs.h:231
static void mc_part_std(AVSContext *h, int chroma_height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, cavs_vector *mv)
Definition: cavs.c:447
static int16_t block[64]
Definition: dct-test.c:88