
Coding Standards for GNUstep Libraries

26 Jun 1996

Adam Fedor



Copyright c
 1997 Free Software Foundation
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modi�ed versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modi�ed versions.



1

Coding Standards

Introduction
This document explains the o�cial coding standards which developers for GNUstep should
follow. Note that these standards are in addition to GNU coding standards, not a replace-
ment of them.

To summarize, always add a ChangeLog message whenever your commit a change. Make
sure your patch, if possible, improves the operation of the library, not just �xes things - i.e.
there are many places where things are just hacked together from long ago and really aren't
correct. It's better to rewrite the whole thing correctly, then just make some temporary �x.

Some particular pieces of code which may seem odd or wrong may in fact be
there for particular and obscure, but necessary reasons. If you have questions, ask on
bug-gnustep@gnu.org or gnustep-dev@gnu.org.

ChangeLog Entries
Always include a ChangeLog entry for work that you do. Look for the ChangeLog �le in
the current directory or look up to any number of parent directories. Typically there is one
for each library.

Emacs currently formats the header like this:
2000-03-11 Adam Fedor <fedor@gnu.org>

and formats changes to functions/methods like this:
* Source/NSSlider.m ([NSSlider -initWithFrame:]):

to which you add your own comments on the same line (with word wrapping). Although if
you're making similar changes to multiple methods, it's ok to leave out the function/method
name.

Important: Changelog entries should state what was changed, not why it was changed.
It's more appropriate to put that in the source code, where someone can �nd it, or in the
documentation.

Coding Style
The point is not what style is 'better' in the abstract { it's what style is standard and
readily usable by all the people wanting to use/work on GNUstep. A reasonably good
consistent style is better for collaborative work than a collection of styles irrespective of
their individual merits. If you commit changes that don't conform to the project standards,
that just means that someone else will have a tedious time making the necessary corrections
(or removing your changes).

The GNUstep coding standards are essentially the same as the GNU coding standards
(http://www.gnu.org/prep/standards_toc.html), but here is a summary of the essen-
tials.

White space should be used for clarity throughout. In particular, variable declarations
should be separated from code by a blank line and function/method implementations should
be separated by a blank line.

mailto:bug-gnustep@gnu.org
mailto:gnustep-dev@gnu.org
http://www.gnu.org/prep/standards_toc.html


2 Coding Standards for GNUstep Libraries

Tabstops should be 8 spaces.
All binary operators should be surrounded by white space with the exception of the

comma (only a trailing white space), and the . and -> structure member references (no
space).

x = y + z;

x += 2;

x = ptr->field;

x = record.member;

x++, y++;

Brackets should have space only before the leading bracket and after the trailing bracket
(as in this example), though there are odd occasions where those spaces might be omitted
((eg. when brackets are doubled)). This applies to square brackets too.

Where round brackets are used for type-casts or at the end of a statement, there is
normally no space between the closing bracket and the following expression or semicolon-

a = (int)b;

- (void) methodWithArg1: (int)arg1 andArg2: (float)arg2;

a = foo (ax, y, z);

The placement of curly brackets is part of the indentation rules. the correct GNU style
is

if (...)

{

...

}

For function implementations, the function names must begin on column zero (types on
the preceeding line). For function predeclaration, the types and the name should appear
on the same line if possible.

static int myFunction(int a, int b);

static int

myFunction(int a, int b)

{

return a + b;

}

The curly brackets enclosing function and method implementations should be based in
column 0. Indentation is in steps of two spaces.

int

myMax(int a, int b)

{

if (a < b)

{

return b;

}

return a;

}



3

Lines longer than 80 columns must be split up, if possible with the line wrap occurring
immediately before an operator. The wrapped lines are indented by two spaces form the
original.

if ((conditionalTestVariable1 > conditionaltestVariable2)

&& (conditionalTestvariable3 > conditionalTestvariable4))

{

// Do something here.

}

Some things the standards seem to think are 'should' rather than 'must':
Multiline comments should use /* ... */ while single line comments may use //.
In a C/ObjC variable declaration, the `*' refers to the variable, not to the type, so you

write
char *foo;

not
char* foo;

Using the latter approach encourages newbie programmers to thing they can declare two
pointer variables by writing

char* foo,bar;

when of course they need
char *foo, *bar;

or (in my opinion better)
char *foo;

char *bar;

An exception to the indentation rules for Objective-C: We normally don't break long
methods by indenting subsequent lines by two spaces, but make the parts of the method
line up instead. The way to do this is indent so the colons line up.

[receiver doSomethingWith: firstArg

and: secondArg

also: thirdArg];

That's the style used mostly in the GNUstep code - and therefore the one I try to keep
to.

Finally, my own preference (not part of the standard in any way) is to generally use
curly brackets for control constructs, event where only one line of code is involved

if (a)

{

x = y;

}

Memory Management
In anticipation of the day when we can make the use of a Garbage Collector possible for all
GNUstep apps (it's almost-usable/usable-with-care for non-gui apps now), the normal use
of retain/release/autorelease is deprecated.



4 Coding Standards for GNUstep Libraries

You should always use the macros RETAIN(), RELEASE() and AUTORELEASE()
(de�ned in NSObject.h) instead.

There are also some extra macros that may be of use -
� ASSIGN(object,value) to assign an object variable, preforming the appropriate re-

tain/release as necessary.
� ASSIGNCOPY(object,value) to copy the value and assign it to the object.
� DESTROY(object) to release an object variable and set it to nil.
� TEST RETAIN(object) to retain an object if it is non-nil
� TEST RELEASE(object) to release an object if it is non-nil
� TEST AUTORELEASE(object) to autorelease an object if it is non-nil
� CREATE AUTORELEASE POOL(name) to create an autorelease pool with the spec-

i�ed name.
� IF NO GC(X) compile the code 'X' only if GarbageCollection is not in use.

Error Handling
Initialization methods (e.g. -init) should, upon failure to initialize the class, release itself
and return nil. This may mean in certain cases, that it should catch exceptions, since the
calling method will be expecting a nil object rather than an exception on failure. However,
init methods should endeavor to provide some information, via NSLog, on the failure.

All other methods should cause an exception on failure*, unless returning nil is a valid
response (e.g. [dictionary objectForKey: nil]) or if documented otherwise.

Failure here is a relative term. I'd interpret failure to occur when either system resources
have been exceeded, an operation was performed on invalid data, or a required precondition
was not met. On the other hand, passing a nil object as a parameter (as in [(NSMutable-
Data *)data appendData: nil]), or other "unusual" requests should succeed in a reasonable
manner (or return nil, if appropriate) and/or reasonable default values could be used.

If an error is recoverable or it does not damage the internal state of an object, it's ok not
to raise an error. At the very least, though, a message should be printed through NSLog.

Special care should be taken in methods that create resources like allocate memory or
open �les or obtain general system resources (locks, shared memory etc.) from the kernel.
If an exception is generated between the allocation of the resource and its disposal, the
resource will be simply lost without any possibility to release. The code should check for
exceptions and if something bad occurs it should release all the allocated resources and
reraise the exception.

Unfortunately there is no nice way to do this automatically in OpenStep. Java has the
"�nally" block which is speci�cally designed for this task. A similar mechanism exists in
libFoundation with the CLEANUP and FINALLY blocks.

Variable Declaration
All variables should be decalred at the beginning of a block. The new C99 standard (and
gcc 3.X) allow variables to be declared anywhere in a block, including after executable code.
However, in order to be compatible with older compilers, all GNUstep programs should keep
the old behavior.



5

Certainly we would consider it a bug to introduce code into the GNUstep libraries which
stopped them compiling with one of the commonly used compilers.

Object Persistance
The standard method of saving and restoring object information in GNUstep is through the
use of the -encodeWithCoder: and -initWithCoder: methods. Any object which requires
persistance implements these methods. They are used, for instance by Gorm, to save
GUI interface elements. It is important that all changes to these methods be backward
compatible with previously stored archives (for instance, those created by Gorm). The
easiest way to do this is to use class version numbers to indicate which archive con�guration
should be read.

Documentation
Document every method you change or add! This makes it easier to �x our lack of documen-
tation and keep up to date with changes. Make sure you do not copy either the OpenStep or
Cocoa documentation. Some methods are so simple you might have to intentionally reword
the documentation so it is di�erent.

Currently there is a di�erance of opinion on whether to document in the header or in
the source �le, although we generally lean towards the header currently. Make sure you are
consistant with the current method of documentation in the source �le you are changing.

Before You Commit
� Make sure you have a ChangeLog entry
� Make sure everything still compiles
� Make sure you've tested the change as much as is reasonable.
� If you have added a class, add the class to `Foudation/Foundation.h' or

`Appkit/Appkit.h' if appropriate.
� Documentation the methods you have changed or added.
� If you have updated and con�gure checks, be sure to run both autoconf and autoheader.

Contributing
Contributing code is not di�cult. Here are some general guidelines:
� We maintain the right to accept or reject potential contributions. Generally, the only

reasons for rejecting contributions are cases where they duplicate existing or nearly-
released code, contain unremovable speci�c machine dependencies, or are somehow
incompatible with the rest of the library.

� Acceptance of contributions means that the code is accepted for adaptation into
GNUstep. We reserve the right to make various editorial changes in code. Very often,
this merely entails formatting, maintenance of various conventions, etc. Contributors
are always given authorship credit and shown the �nal version for approval.

� Contributors must assign their copyright to FSF via a form sent out upon acceptance.
Assigning copyright to FSF ensures that the code may be freely distributed.



6 Coding Standards for GNUstep Libraries

� Assistance in providing documentation, test �les, and debugging support is strongly
encouraged.

Extensions, comments, and suggested modi�cations of existing GNUstep features are
also very welcome.


