[ previous ]
[ Contents ]
[ 1 ]
[ 2 ]
[ 3 ]
[ 4 ]
[ 5 ]
[ 6 ]
[ 7 ]
[ A ]
[ next ]
DebianDoc-SGML Manual
Appendix A - ISO Character Entities
This appendix contains an overview of the ISO 8879:1986 character entities and
their equivalents in the output formats that DebianDoc-SGML supports.
A.1 Added Latin 1
-
á => á
-
Á => Á
-
â => â
-
 => Â
-
à => à
-
À => À
-
å => å
-
Å => Å
-
ã => ã
-
à => Ã
-
ä => ä
-
Ä => Ä
-
æ => æ
-
Æ => Æ
-
ç => ç
-
Ç => Ç
-
ð => ð
-
Ð => Ð
-
é => é
-
É => É
-
ê => ê
-
Ê => Ê
-
è => è
-
È => È
-
ë => ë
-
Ë => Ë
-
í => í
-
Í => Í
-
î => î
-
Î => Î
-
ì => ì
-
Ì => Ì
-
ï => ï
-
Ï => Ï
-
ñ => ñ
-
Ñ => Ñ
-
ó => ó
-
Ó => Ó
-
ô => ô
-
Ô => Ô
-
ò => ò
-
Ò => Ò
-
ø => ø
-
Ø => Ø
-
õ => õ
-
Õ => Õ
-
ö => ö
-
Ö => Ö
-
ß => ß
-
þ => þ
-
Þ => Þ
-
ú => ú
-
Ú => Ú
-
û => û
-
Û => Û
-
ù => ù
-
Ù => Ù
-
ü => ü
-
Ü => Ü
-
ý => ý
-
Ý => Ý
-
ÿ => ÿ
A.2 Added Latin 2
-
ă => [abreve]
-
Ă => [Abreve]
-
ā => [amacr]
-
Ā => [Amacr]
-
ą => [aogon]
-
Ą => [Aogon]
-
ć => [cacute]
-
Ć => [Cacute]
-
č => [ccaron]
-
Č => [Ccaron]
-
ĉ => [ccirc]
-
Ĉ => [Ccirc]
-
ċ => [cdot]
-
Ċ => [Cdot]
-
ď => [dcaron]
-
Ď => [Dcaron]
-
đ => [dstrok]
-
Đ => [Dstrok]
-
ě => [ecaron]
-
Ě => [Ecaron]
-
ė => [edot]
-
Ė => [Edot]
-
ē => [emacr]
-
Ē => [Emacr]
-
ę => [eogon]
-
Ę => [Eogon]
-
ǵ => [gacute]
-
ğ => [gbreve]
-
Ğ => [Gbreve]
-
Ģ => [Gcedil]
-
ĝ => [gcirc]
-
Ĝ => [Gcirc]
-
ġ => [gdot]
-
Ġ => [Gdot]
-
ĥ => [hcirc]
-
Ĥ => [Hcirc]
-
ħ => [hstrok]
-
Ħ => [Hstrok]
-
İ => [Idot]
-
Ī => [Imacr]
-
ī => [imacr]
-
ij => ij
-
IJ => IJ
-
ı => [inodot]
-
į => [iogon]
-
Į => [Iogon]
-
ĩ => [itilde]
-
Ĩ => [Itilde]
-
ĵ => [jcirc]
-
Ĵ => [Jcirc]
-
ķ => [kcedil]
-
Ķ => [Kcedil]
-
ĸ => [kgreen]
-
ĺ => [lacute]
-
Ĺ => [Lacute]
-
ľ => [lcaron]
-
Ľ => [Lcaron]
-
ļ => [lcedil]
-
Ļ => [Lcedil]
-
ŀ => [lmidot]
-
Ŀ => [Lmidot]
-
ł => [lstrok]
-
Ł => [Lstrok]
-
ń => [nacute]
-
Ń => [Nacute]
-
ŋ => [eng]
-
Ŋ => [ENG]
-
ʼn => n'
-
ň => [ncaron]
-
Ň => [Ncaron]
-
ņ => [ncedil]
-
Ņ => [Ncedil]
-
ő => [odblac]
-
Ő => [Odblac]
-
ō => [omacr]
-
Ō => [Omacr]
-
œ => œ
-
Œ => Œ
-
ŕ => [racute]
-
Ŕ => [Racute]
-
ř => [rcaron]
-
Ř => [Rcaron]
-
ŗ => [rcedil]
-
Ŗ => [Rcedil]
-
ś => [sacute]
-
Ś => [Sacute]
-
š => š
-
Š => Š
-
ş => [scedil]
-
Ş => [Scedil]
-
ŝ => [scirc]
-
Ŝ => [Scirc]
-
ť => [tcaron]
-
Ť => [Tcaron]
-
ţ => [tcedil]
-
Ţ => [Tcedil]
-
ŧ => [tstrok]
-
Ŧ => [Tstrok]
-
ŭ => [ubreve]
-
Ŭ => [Ubreve]
-
ű => [udblac]
-
Ű => [Udblac]
-
ū => [umacr]
-
Ū => [Umacr]
-
ų => [uogon]
-
Ų => [Uogon]
-
ů => [uring]
-
Ů => [Uring]
-
ũ => [utilde]
-
Ũ => [Utilde]
-
ŵ => [wcirc]
-
Ŵ => [Wcirc]
-
ŷ => [ycirc]
-
Ŷ => [Ycirc]
-
Ÿ => Ÿ
-
ź => [zacute]
-
Ź => [Zacute]
-
ž => [zcaron]
-
Ž => [Zcaron]
-
ż => [zdot]
-
Ż => [Zdot]
A.3 Greek Letters
-
&agr; => [agr]
-
&Agr; => [Agr]
-
&bgr; => [bgr]
-
&Bgr; => [Bgr]
-
&ggr; => [ggr]
-
&Ggr; => [Ggr]
-
&dgr; => [dgr]
-
&Dgr; => [Dgr]
-
&egr; => [egr]
-
&Egr; => [Egr]
-
&zgr; => [zgr]
-
&Zgr; => [Zgr]
-
&eegr; => [eegr]
-
&EEgr; => [EEgr]
-
&thgr; => [thgr]
-
&THgr; => [THgr]
-
&igr; => [igr]
-
&Igr; => [Igr]
-
&kgr; => [kgr]
-
&Kgr; => [Kgr]
-
&lgr; => [lgr]
-
&Lgr; => [Lgr]
-
&mgr; => [mgr]
-
&Mgr; => [Mgr]
-
&ngr; => [ngr]
-
&Ngr; => [Ngr]
-
&xgr; => [xgr]
-
&Xgr; => [Xgr]
-
&ogr; => [ogr]
-
&Ogr; => [Ogr]
-
&pgr; => [pgr]
-
&Pgr; => [Pgr]
-
&rgr; => [rgr]
-
&Rgr; => [Rgr]
-
&sgr; => [sgr]
-
&Sgr; => [Sgr]
-
&sfgr; => [sfgr]
-
&tgr; => [tgr]
-
&Tgr; => [Tgr]
-
&ugr; => [ugr]
-
&Ugr; => [Ugr]
-
&phgr; => [phgr]
-
&PHgr; => [PHgr]
-
&khgr; => [khgr]
-
&KHgr; => [KHgr]
-
&psgr; => [psgr]
-
&PSgr; => [PSgr]
-
&ohgr; => [ohgr]
-
&OHgr; => [OHgr]
A.4 Monotoniko Greek
-
&aacgr; => [aacgr]
-
&Aacgr; => [Aacgr]
-
&eacgr; => [eacgr]
-
&Eacgr; => [Eacgr]
-
&eeacgr; => [eeacgr]
-
&EEacgr; => [EEacgr]
-
&idigr; => [idigr]
-
&Idigr; => [Idigr]
-
&iacgr; => [iacgr]
-
&Iacgr; => [Iacgr]
-
&idiagr; => [idiagr]
-
&oacgr; => [oacgr]
-
&Oacgr; => [Oacgr]
-
&udigr; => [udigr]
-
&Udigr; => [Udigr]
-
&uacgr; => [uacgr]
-
&Uacgr; => [Uacgr]
-
&udiagr; => [udiagr]
-
&ohacgr; => [ohacgr]
-
&OHacgr; => [OHacgr]
A.5 Russian Cyrillic
-
а => [acy]
-
А => [Acy]
-
б => [bcy]
-
Б => [Bcy]
-
в => [vcy]
-
В => [Vcy]
-
г => [gcy]
-
Г => [Gcy]
-
д => [dcy]
-
Д => [Dcy]
-
е => [iecy]
-
Е => [IEcy]
-
ё => [iocy]
-
Ё => [IOcy]
-
ж => [zhcy]
-
Ж => [ZHcy]
-
з => [zcy]
-
З => [Zcy]
-
и => [icy]
-
И => [Icy]
-
й => [jcy]
-
Й => [Jcy]
-
к => [kcy]
-
К => [Kcy]
-
л => [lcy]
-
Л => [Lcy]
-
м => [mcy]
-
М => [Mcy]
-
н => [ncy]
-
Н => [Ncy]
-
о => [ocy]
-
О => [Ocy]
-
п => [pcy]
-
П => [Pcy]
-
р => [rcy]
-
Р => [Rcy]
-
с => [scy]
-
С => [Scy]
-
т => [tcy]
-
Т => [Tcy]
-
у => [ucy]
-
У => [Ucy]
-
ф => [fcy]
-
Ф => [Fcy]
-
х => [khcy]
-
Х => [KHcy]
-
ц => [tscy]
-
Ц => [TScy]
-
ч => [chcy]
-
Ч => [CHcy]
-
ш => [shcy]
-
Ш => [SHcy]
-
щ => [shchcy]
-
Щ => [SHCHcy]
-
ъ => [hardcy]
-
Ъ => [HARDcy]
-
ы => [ycy]
-
Ы => [Ycy]
-
ь => [softcy]
-
Ь => [SOFTcy]
-
э => [ecy]
-
Э => [Ecy]
-
ю => [yucy]
-
Ю => [YUcy]
-
я => [yacy]
-
Я => [YAcy]
-
№ => [numero]
A.6 Non-Russian Cyrillic
-
ђ => [djcy]
-
Ђ => [DJcy]
-
ѓ => [gjcy]
-
Ѓ => [GJcy]
-
є => [jukcy]
-
Є => [Jukcy]
-
ѕ => [dscy]
-
Ѕ => [DScy]
-
і => [iukcy]
-
І => [Iukcy]
-
ї => [yicy]
-
Ї => [YIcy]
-
ј => [jsercy]
-
Ј => [Jsercy]
-
љ => [ljcy]
-
Љ => [LJcy]
-
њ => [njcy]
-
Њ => [NJcy]
-
ћ => [tshcy]
-
Ћ => [TSHcy]
-
ќ => [kjcy]
-
Ќ => [KJcy]
-
ў => [ubrcy]
-
Ў => [Ubrcy]
-
џ => [dzcy]
-
Џ => [DZcy]
A.7 Numeric and Special Graphic
-
½ => ½
-
½ => ½
-
¼ => ¼
-
¾ => ¾
-
⅛ => 1/8
-
⅜ => 3/8
-
⅝ => 5/8
-
⅞ => 7/8
-
¹ => ¹
-
² => ²
-
³ => ³
-
+ => +
-
± => ±
-
< => <
-
= => =
-
> => >
-
÷ => ÷
-
× => ×
-
¤ => ¤
-
£ => £
-
$ => $
-
¢ => ¢
-
¥ => ¥
-
# => #
-
% => %
-
& => &
-
* => *
-
@ => @
-
[ => [
-
\ => \
-
] => ]
-
{ => {
-
― => --
-
| => |
-
} => }
-
µ => µ
-
Ω => [ohm]
-
° => °
-
º => º
-
ª => ª
-
§ => §
-
¶ => ¶
-
· => ·
-
← => ←
-
→ => →
-
↑ => ↑
-
↓ => ↓
-
© => ©
-
® => ®
-
™ => ™
-
¦ => ¦
-
¬ => ¬
-
♪ => [sung]
-
! => !
-
¡ => ¡
-
" => "
-
' => '
-
( => (
-
) => )
-
, => ,
-
_ => _
-
‐ => -
-
. => .
-
/ => /
-
: => :
-
; => ;
-
? => ?
-
¿ => ¿
-
« => «
-
» => »
-
‘ => ‘
-
’ => ’
-
“ => “
-
” => ”
-
=>
-
­ =>
A.8 Diacritical Marks
-
´ => ´
-
˘ => [breve]
-
ˇ => [caron]
-
¸ => ¸
-
ˆ => ˆ
-
˝ => ''
-
¨ => ¨
-
˙ => [dot]
-
` => `
-
¯ => ¯
-
˛ => [ogon]
-
˚ => [ring]
-
˜ => ˜
-
¨ => ¨
A.9 Publishing
-
  =>
-
  =>
-
  => [emsp13]
-
  => [emsp14]
-
  => [numsp]
-
  => [puncsp]
-
  =>
-
  => [hairsp]
-
— => —
-
– => –
-
‐ => -
-
␣ => _
-
… => …
-
‥ => ..
-
⅓ => 1/3
-
⅔ => 2/3
-
⅕ => 1/5
-
⅖ => 2/5
-
⅗ => 3/5
-
⅘ => 4/5
-
⅙ => 1/6
-
⅚ => 5/6
-
℅ => c/o
-
█ => [block]
-
▀ => [uhblk]
-
▄ => [lhblk]
-
░ => [blk14]
-
▒ => [blk12]
-
▓ => [blk34]
-
▮ => [marker]
-
○ => o
-
□ => [squ]
-
▭ => [rect]
-
▵ => [utri]
-
▿ => [dtri]
-
☆ => [star]
-
• => •
-
▪ => [squf]
-
▴ => [utrif]
-
▾ => [dtrif]
-
◂ => [ltrif]
-
▸ => [rtrif]
-
♣ => ♣
-
♦ => ♦
-
♥ => ♥
-
♠ => ♠
-
✠ => [malt]
-
† => †
-
‡ => ‡
-
✓ => [check]
-
✗ => x
-
♯ => #
-
♭ => [flat]
-
♂ => [male]
-
♀ => [female]
-
☎ => [phone]
-
⌕ => [telrec]
-
℗ => [copysr]
-
⁁ => ^
-
‚ => '
-
„ => "
-
ff => ff
-
fi => fi
-
fj => fj
-
ffi => ffi
-
ffl => ffl
-
fl => fl
-
… => ...
-
” => "
-
’ => '
-
⋮ => :
-
⁃ => -
-
◊ => ◊
-
⧫ => [lozf]
-
◃ => [ltri]
-
▹ => [rtri]
-
★ => [starf]
-
♮ => [natur]
-
℞ => [rx]
-
✶ => [sext]
-
⌖ => [target]
-
⌍ => [dlcrop]
-
⌌ => [drcrop]
-
⌏ => [ulcrop]
-
⌎ => [urcrop]
A.10 Box and Line Drawing
-
─ => [boxh]
-
│ => [boxv]
-
└ => [boxur]
-
┘ => [boxul]
-
┐ => [boxdl]
-
┌ => [boxdr]
-
├ => [boxvr]
-
┴ => [boxhu]
-
┤ => [boxvl]
-
┬ => [boxhd]
-
┼ => [boxvh]
-
╞ => [boxvR]
-
╨ => [boxhU]
-
╡ => [boxvL]
-
╥ => [boxhD]
-
╪ => [boxvH]
-
═ => [boxH]
-
║ => [boxV]
-
╚ => [boxUR]
-
╝ => [boxUL]
-
╗ => [boxDL]
-
╔ => [boxDR]
-
╠ => [boxVR]
-
╩ => [boxHU]
-
╣ => [boxVL]
-
╦ => [boxHD]
-
╬ => [boxVH]
-
╟ => [boxVr]
-
╧ => [boxHu]
-
╢ => [boxVl]
-
╤ => [boxHd]
-
╫ => [boxVh]
-
╘ => [boxuR]
-
╜ => [boxUl]
-
╕ => [boxdL]
-
╓ => [boxDr]
-
╙ => [boxUr]
-
╛ => [boxuL]
-
╖ => [boxDl]
-
╒ => [boxdR]
A.11 General Technical
-
ℵ => ℵ
-
∧ => ∧
-
&ang90; => |_
-
∢ => [angsph]
-
≈ => [ap]
-
∵ => [becaus]
-
⊥ => [bottom]
-
∩ => ∩
-
≅ => ≅
-
∮ => [conint]
-
∪ => ∪
-
≡ => ≡
-
∃ => ∃
-
∀ => ∀
-
ƒ => ƒ
-
≥ => ≥
-
⇔ => <==>
-
∞ => ∞
-
∫ => ∫
-
∈ => ∈
-
⟨ => 〈
-
⇐ => ⇐
-
≤ => ≤
-
− => −
-
∓ => -/+
-
∇ => ∇
-
≠ => ≠
-
∋ => ∋
-
∨ => ∨
-
∥ => ||
-
∂ => ∂
-
‰ => ‰
-
⊥ => ⊥
-
′ => ′
-
″ => ″
-
∝ => ∝
-
√ => √
-
⟩ => 〉
-
⇒ => ⇒
-
∼ => ∼
-
≃ => [sime]
-
□ => [square]
-
⊂ => ⊂
-
⊆ => ⊆
-
⊃ => ⊃
-
⊇ => ⊇
-
∴ => ∴
-
‖ => ||
-
Å => AA
-
ℬ => B
-
∘ => o
-
¨ => [Dot]
-
⃜ => [DotDot]
-
ℋ => H
-
ℒ => L
-
∗ => ∗
-
∉ => ∉
-
ℴ => O
-
ℳ => M
-
⃛ => [tdot]
-
‴ => '''
-
≙ => [wedgeq]
A.12 Greek Symbols
-
α => α
-
β => β
-
γ => γ
-
Γ => Γ
-
ϝ => Γ
-
δ => δ
-
Δ => Δ
-
ε => ε
-
ϵ => ε
-
&epsis; => ε
-
ζ => ζ
-
η => η
-
&thetas; => θ
-
Θ => Θ
-
ϑ => ϑ
-
ι => ι
-
κ => κ
-
ϰ => κ
-
λ => λ
-
Λ => Λ
-
μ => μ
-
ν => ν
-
ξ => ξ
-
Ξ => Ξ
-
π => π
-
ϖ => ϖ
-
Π => Π
-
ρ => ρ
-
ϱ => ρ
-
σ => σ
-
Σ => Σ
-
ς => ς
-
τ => τ
-
υ => υ
-
ϒ => Υ
-
&phis; => φ
-
Φ => Φ
-
ϕ => φ
-
χ => χ
-
ψ => ψ
-
Ψ => Ψ
-
ω => ω
-
Ω => Ω
A.13 Alternative Greek Symbols
-
&b.alpha; => α
-
&b.beta; => β
-
&b.gamma; => γ
-
&b.Gamma; => Γ
-
&b.gammad; => Γ
-
&b.delta; => δ
-
&b.Delta; => Δ
-
&b.epsi; => ε
-
&b.epsiv; => ε
-
&b.epsis; => ε
-
&b.zeta; => ζ
-
&b.eta; => η
-
&b.thetas; => θ
-
&b.Theta; => Θ
-
&b.thetav; => ϑ
-
&b.iota; => ι
-
&b.kappa; => κ
-
&b.kappav; => κ
-
&b.lambda; => λ
-
&b.Lambda; => Λ
-
&b.mu; => μ
-
&b.nu; => ν
-
&b.xi; => ξ
-
&b.Xi; => Ξ
-
&b.pi; => π
-
&b.piv; => ϖ
-
&b.Pi; => Π
-
&b.rho; => ρ
-
&b.rhov; => ρ
-
&b.sigma; => σ
-
&b.Sigma; => Σ
-
&b.sigmav; => ς
-
&b.tau; => τ
-
&b.upsi; => υ
-
&b.Upsi; => Υ
-
&b.phis; => φ
-
&b.Phi; => Φ
-
&b.phiv; => φ
-
&b.chi; => χ
-
&b.psi; => ψ
-
&b.Psi; => Ψ
-
&b.omega; => ω
-
&b.Omega; => Ω
A.14 Added Math Symbols: Ordinary
-
∠ => ∠
-
∡ => [angmsd]
-
ℶ => [beth]
-
‵ => `
-
∁ => C
-
ℸ => [daleth]
-
ℓ => l
-
∅ => ∅
-
ℷ => [gimel]
-
ℑ => ℑ
-
ı => [inodot]
-
&jnodot; => [jnodot]
-
∄ => [nexist]
-
Ⓢ => [oS]
-
ℏ => [planck]
-
ℜ => ℜ
-
&sbsol; => \
-
&vprime; => '
-
℘ => ℘
A.15 Added Math Symbols: Binary Operators
-
⨿ => [amalg]
-
⌆ => [Barwed]
-
⌅ => [barwed]
-
⋒ => [Cap]
-
⋓ => [Cup]
-
⋎ => [cuvee]
-
⋏ => [cuwed]
-
⋄ => [diam]
-
⋇ => [divonx]
-
⊺ => [intcal]
-
⋋ => [lthree]
-
⋉ => [ltimes]
-
⊟ => [minusb]
-
⊛ => [oast]
-
⊚ => [ocir]
-
⊝ => [odash]
-
⊙ => [odot]
-
⊖ => [ominus]
-
⊕ => ⊕
-
⊘ => [osol]
-
⊗ => ⊗
-
⊞ => [plusb]
-
∔ => [plusdo]
-
⋌ => [rthree]
-
⋊ => [rtimes]
-
⋅ => ⋅
-
⊡ => [sdotb]
-
∖ => [setmn]
-
⊓ => [sqcap]
-
⊔ => [sqcup]
-
∖ => [ssetmn]
-
⋆ => [sstarf]
-
⊠ => [timesb]
-
⊤ => [top]
-
⊎ => [uplus]
-
≀ => [wreath]
-
◯ => [xcirc]
-
▽ => [xdtri]
-
△ => [xutri]
-
∐ => [coprod]
-
∏ => ∏
-
∑ => ∑
A.16 Added Math Symbols: Relations
-
≊ => [ape]
-
≈ => ≈
-
≌ => [bcong]
-
϶ => [bepsi]
-
⋈ => [bowtie]
-
∽ => [bsim]
-
⋍ => [bsime]
-
≎ => [bump]
-
≏ => [bumpe]
-
≗ => [cire]
-
≔ => [colone]
-
⋞ => [cuepr]
-
⋟ => [cuesc]
-
&cupre; => [cupre]
-
⊣ => [dashv]
-
≖ => [ecir]
-
≕ => [ecolon]
-
≑ => [eDot]
-
≐ => [esdot]
-
≒ => [efDot]
-
⪖ => [egs]
-
⪕ => [els]
-
≓ => [erDot]
-
⋔ => [fork]
-
⌢ => [frown]
-
⪆ => [gap]
-
&gsdot; => [gsdot]
-
≧ => [gE]
-
⋛ => [gel]
-
⪌ => [gEl]
-
⩾ => [ges]
-
⋙ => [Gg]
-
≷ => [gl]
-
≳ => [gsim]
-
≫ => [Gt]
-
⪅ => [lap]
-
&ldot; => [ldot]
-
≦ => [lE]
-
⪋ => [lEg]
-
⋚ => [leg]
-
⩽ => [les]
-
≶ => [lg]
-
⋘ => [Ll]
-
≲ => [lsim]
-
≪ => [Lt]
-
⊴ => [ltrie]
-
∣ => [mid]
-
⊧ => [models]
-
≺ => [pr]
-
⪷ => [prap]
-
⪯ => [pre]
-
≾ => [prsim]
-
⊵ => [rtrie]
-
&samalg; => [samalg]
-
≻ => [sc]
-
⪸ => [scap]
-
≽ => [sccue]
-
⪰ => [sce]
-
≿ => [scsim]
-
⌢ => [sfrown]
-
∣ => [smid]
-
⌣ => [smile]
-
∥ => [spar]
-
⊏ => [sqsub]
-
⊑ => [sqsube]
-
⊐ => [sqsup]
-
⊒ => [sqsupe]
-
⌣ => [ssmile]
-
⋐ => [Sub]
-
⫅ => [subE]
-
⋑ => [Sup]
-
⫆ => [supE]
-
≈ => [thkap]
-
∼ => [thksim]
-
≜ => [trie]
-
≬ => [twixt]
-
⊢ => [vdash]
-
⊩ => [Vdash]
-
⊨ => [vDash]
-
⊻ => [veebar]
-
⊲ => [vltri]
-
∝ => [vprop]
-
⊳ => [vrtri]
-
⊪ => [Vvdash]
A.17 Added Math Symbols: Negated Relations
-
⪊ => [gnap]
-
⪈ => [gne]
-
≩ => [gnE]
-
⋧ => [gnsim]
-
≩︀ => [gvnE]
-
⪉ => [lnap]
-
≨ => [lnE]
-
⪇ => [lne]
-
⋦ => [lnsim]
-
≨︀ => [lvnE]
-
≉ => [nap]
-
≇ => [ncong]
-
≢ => [nequiv]
-
≧̸ => [ngE]
-
≱ => [nge]
-
⩾̸ => [nges]
-
≯ => [ngt]
-
≰ => [nle]
-
≦̸ => [nlE]
-
⩽̸ => [nles]
-
≮ => [nlt]
-
⋪ => [nltri]
-
⋬ => [nltrie]
-
∤ => [nmid]
-
∦ => [npar]
-
⊀ => [npr]
-
⪯̸ => [npre]
-
⋫ => [nrtri]
-
⋭ => [nrtrie]
-
⊁ => [nsc]
-
⪰̸ => [nsce]
-
≁ => [nsim]
-
≄ => [nsime]
-
∤ => [nsmid]
-
∦ => [nspar]
-
⊄ => ⊄
-
⊈ => [nsube]
-
⫅̸ => [nsubE]
-
⊅ => [nsup]
-
⫆̸ => [nsupE]
-
⊉ => [nsupe]
-
⊬ => [nvdash]
-
⊭ => [nvDash]
-
⊯ => [nVDash]
-
⊮ => [nVdash]
-
⪹ => [prnap]
-
⪵ => [prnE]
-
⋨ => [prnsim]
-
⪺ => [scnap]
-
⪶ => [scnE]
-
⋩ => [scnsim]
-
⊊ => [subne]
-
⫋ => [subnE]
-
⊋ => [supne]
-
⫌ => [supnE]
-
⫋︀ => [vsubnE]
-
⊊︀ => [vsubne]
-
⊋︀ => [vsupne]
-
⫌︀ => [vsupnE]
A.18 Added Math Symbols: Arrow Relations
-
↶ => [cularr]
-
↷ => [curarr]
-
⇓ => ⇓
-
&darr2; => [darr2]
-
⇃ => [dharl]
-
⇂ => [dharr]
-
⇚ => [lAarr]
-
↞ => [Larr]
-
&larr2; => [larr2]
-
↩ => [larrhk]
-
↫ => [larrlp]
-
↢ => [larrtl]
-
↽ => [lhard]
-
↼ => [lharu]
-
⇔ => ⇔
-
↔ => ↔
-
&lrarr2; => [lrarr2]
-
&rlarr2; => [rlarr2]
-
↭ => [harrw]
-
&rlhar2; => [rlhar2]
-
&lrhar2; => [lrhar2]
-
↰ => [lsh]
-
↦ => [map]
-
⊸ => [mumap]
-
↗ => [nearr]
-
⇍ => [nlArr]
-
↚ => [nlarr]
-
⇎ => [nhArr]
-
↮ => [nharr]
-
↛ => [nrarr]
-
⇏ => [nrArr]
-
↖ => [nwarr]
-
↺ => [olarr]
-
↻ => [orarr]
-
⇛ => [rAarr]
-
↠ => [Rarr]
-
&rarr2; => [rarr2]
-
↪ => [rarrhk]
-
↬ => [rarrlp]
-
↣ => [rarrtl]
-
↝ => [rarrw]
-
⇁ => [rhard]
-
⇀ => [rharu]
-
↱ => [rsh]
-
&drarr; => [drarr]
-
&dlarr; => [dlarr]
-
⇑ => ⇑
-
&uarr2; => [uarr2]
-
⇕ => [vArr]
-
↕ => [varr]
-
↿ => [uharl]
-
↾ => [uharr]
-
⟸ => [xlArr]
-
⟺ => [xhArr]
-
⟷ => [xharr]
-
⟹ => [xrArr]
A.19 Added Math Symbols: Delimiters
-
⌉ => ⌉
-
⌋ => ⌋
-
⦔ => [rpargt]
-
⌝ => [urcorn]
-
⌟ => [drcorn]
-
⌈ => ⌈
-
⌊ => ⌊
-
&lpargt; => [lpargt]
-
⌜ => [ulcorn]
-
⌞ => [dlcorn]
[ previous ]
[ Contents ]
[ 1 ]
[ 2 ]
[ 3 ]
[ 4 ]
[ 5 ]
[ 6 ]
[ 7 ]
[ A ]
[ next ]
DebianDoc-SGML Manual
28 July 2004
Ardo van Rangelrooij ardo@debian.org
Ian Jackson ijackson@gnu.ai.mit.edu