Libav
|
00001 /* 00002 * COOK compatible decoder 00003 * Copyright (c) 2003 Sascha Sommer 00004 * Copyright (c) 2005 Benjamin Larsson 00005 * 00006 * This file is part of FFmpeg. 00007 * 00008 * FFmpeg is free software; you can redistribute it and/or 00009 * modify it under the terms of the GNU Lesser General Public 00010 * License as published by the Free Software Foundation; either 00011 * version 2.1 of the License, or (at your option) any later version. 00012 * 00013 * FFmpeg is distributed in the hope that it will be useful, 00014 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00015 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00016 * Lesser General Public License for more details. 00017 * 00018 * You should have received a copy of the GNU Lesser General Public 00019 * License along with FFmpeg; if not, write to the Free Software 00020 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00021 */ 00022 00045 #include <math.h> 00046 #include <stddef.h> 00047 #include <stdio.h> 00048 00049 #include "libavutil/lfg.h" 00050 #include "libavutil/random_seed.h" 00051 #include "avcodec.h" 00052 #include "get_bits.h" 00053 #include "dsputil.h" 00054 #include "bytestream.h" 00055 #include "fft.h" 00056 00057 #include "cookdata.h" 00058 00059 /* the different Cook versions */ 00060 #define MONO 0x1000001 00061 #define STEREO 0x1000002 00062 #define JOINT_STEREO 0x1000003 00063 #define MC_COOK 0x2000000 //multichannel Cook, not supported 00064 00065 #define SUBBAND_SIZE 20 00066 #define MAX_SUBPACKETS 5 00067 //#define COOKDEBUG 00068 00069 typedef struct { 00070 int *now; 00071 int *previous; 00072 } cook_gains; 00073 00074 typedef struct { 00075 int ch_idx; 00076 int size; 00077 int num_channels; 00078 int cookversion; 00079 int samples_per_frame; 00080 int subbands; 00081 int js_subband_start; 00082 int js_vlc_bits; 00083 int samples_per_channel; 00084 int log2_numvector_size; 00085 unsigned int channel_mask; 00086 VLC ccpl; 00087 int joint_stereo; 00088 int bits_per_subpacket; 00089 int bits_per_subpdiv; 00090 int total_subbands; 00091 int numvector_size; 00092 00093 float mono_previous_buffer1[1024]; 00094 float mono_previous_buffer2[1024]; 00096 cook_gains gains1; 00097 cook_gains gains2; 00098 int gain_1[9]; 00099 int gain_2[9]; 00100 int gain_3[9]; 00101 int gain_4[9]; 00102 } COOKSubpacket; 00103 00104 typedef struct cook { 00105 /* 00106 * The following 5 functions provide the lowlevel arithmetic on 00107 * the internal audio buffers. 00108 */ 00109 void (* scalar_dequant)(struct cook *q, int index, int quant_index, 00110 int* subband_coef_index, int* subband_coef_sign, 00111 float* mlt_p); 00112 00113 void (* decouple) (struct cook *q, 00114 COOKSubpacket *p, 00115 int subband, 00116 float f1, float f2, 00117 float *decode_buffer, 00118 float *mlt_buffer1, float *mlt_buffer2); 00119 00120 void (* imlt_window) (struct cook *q, float *buffer1, 00121 cook_gains *gains_ptr, float *previous_buffer); 00122 00123 void (* interpolate) (struct cook *q, float* buffer, 00124 int gain_index, int gain_index_next); 00125 00126 void (* saturate_output) (struct cook *q, int chan, int16_t *out); 00127 00128 AVCodecContext* avctx; 00129 GetBitContext gb; 00130 /* stream data */ 00131 int nb_channels; 00132 int bit_rate; 00133 int sample_rate; 00134 int num_vectors; 00135 int samples_per_channel; 00136 /* states */ 00137 AVLFG random_state; 00138 00139 /* transform data */ 00140 FFTContext mdct_ctx; 00141 float* mlt_window; 00142 00143 /* VLC data */ 00144 VLC envelope_quant_index[13]; 00145 VLC sqvh[7]; //scalar quantization 00146 00147 /* generatable tables and related variables */ 00148 int gain_size_factor; 00149 float gain_table[23]; 00150 00151 /* data buffers */ 00152 00153 uint8_t* decoded_bytes_buffer; 00154 DECLARE_ALIGNED(16, float,mono_mdct_output)[2048]; 00155 float decode_buffer_1[1024]; 00156 float decode_buffer_2[1024]; 00157 float decode_buffer_0[1060]; /* static allocation for joint decode */ 00158 00159 const float *cplscales[5]; 00160 int num_subpackets; 00161 COOKSubpacket subpacket[MAX_SUBPACKETS]; 00162 } COOKContext; 00163 00164 static float pow2tab[127]; 00165 static float rootpow2tab[127]; 00166 00167 /* debug functions */ 00168 00169 #ifdef COOKDEBUG 00170 static void dump_float_table(float* table, int size, int delimiter) { 00171 int i=0; 00172 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); 00173 for (i=0 ; i<size ; i++) { 00174 av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]); 00175 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); 00176 } 00177 } 00178 00179 static void dump_int_table(int* table, int size, int delimiter) { 00180 int i=0; 00181 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); 00182 for (i=0 ; i<size ; i++) { 00183 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]); 00184 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); 00185 } 00186 } 00187 00188 static void dump_short_table(short* table, int size, int delimiter) { 00189 int i=0; 00190 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); 00191 for (i=0 ; i<size ; i++) { 00192 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]); 00193 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); 00194 } 00195 } 00196 00197 #endif 00198 00199 /*************** init functions ***************/ 00200 00201 /* table generator */ 00202 static av_cold void init_pow2table(void){ 00203 int i; 00204 for (i=-63 ; i<64 ; i++){ 00205 pow2tab[63+i]= pow(2, i); 00206 rootpow2tab[63+i]=sqrt(pow(2, i)); 00207 } 00208 } 00209 00210 /* table generator */ 00211 static av_cold void init_gain_table(COOKContext *q) { 00212 int i; 00213 q->gain_size_factor = q->samples_per_channel/8; 00214 for (i=0 ; i<23 ; i++) { 00215 q->gain_table[i] = pow(pow2tab[i+52] , 00216 (1.0/(double)q->gain_size_factor)); 00217 } 00218 } 00219 00220 00221 static av_cold int init_cook_vlc_tables(COOKContext *q) { 00222 int i, result; 00223 00224 result = 0; 00225 for (i=0 ; i<13 ; i++) { 00226 result |= init_vlc (&q->envelope_quant_index[i], 9, 24, 00227 envelope_quant_index_huffbits[i], 1, 1, 00228 envelope_quant_index_huffcodes[i], 2, 2, 0); 00229 } 00230 av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n"); 00231 for (i=0 ; i<7 ; i++) { 00232 result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i], 00233 cvh_huffbits[i], 1, 1, 00234 cvh_huffcodes[i], 2, 2, 0); 00235 } 00236 00237 for(i=0;i<q->num_subpackets;i++){ 00238 if (q->subpacket[i].joint_stereo==1){ 00239 result |= init_vlc (&q->subpacket[i].ccpl, 6, (1<<q->subpacket[i].js_vlc_bits)-1, 00240 ccpl_huffbits[q->subpacket[i].js_vlc_bits-2], 1, 1, 00241 ccpl_huffcodes[q->subpacket[i].js_vlc_bits-2], 2, 2, 0); 00242 av_log(q->avctx,AV_LOG_DEBUG,"subpacket %i Joint-stereo VLC used.\n",i); 00243 } 00244 } 00245 00246 av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n"); 00247 return result; 00248 } 00249 00250 static av_cold int init_cook_mlt(COOKContext *q) { 00251 int j; 00252 int mlt_size = q->samples_per_channel; 00253 00254 if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0) 00255 return -1; 00256 00257 /* Initialize the MLT window: simple sine window. */ 00258 ff_sine_window_init(q->mlt_window, mlt_size); 00259 for(j=0 ; j<mlt_size ; j++) 00260 q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel); 00261 00262 /* Initialize the MDCT. */ 00263 if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1, 1.0)) { 00264 av_free(q->mlt_window); 00265 return -1; 00266 } 00267 av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n", 00268 av_log2(mlt_size)+1); 00269 00270 return 0; 00271 } 00272 00273 static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n) 00274 { 00275 if (1) 00276 return ptr; 00277 } 00278 00279 static av_cold void init_cplscales_table (COOKContext *q) { 00280 int i; 00281 for (i=0;i<5;i++) 00282 q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1); 00283 } 00284 00285 /*************** init functions end ***********/ 00286 00307 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4) 00308 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes))) 00309 00310 static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){ 00311 int i, off; 00312 uint32_t c; 00313 const uint32_t* buf; 00314 uint32_t* obuf = (uint32_t*) out; 00315 /* FIXME: 64 bit platforms would be able to do 64 bits at a time. 00316 * I'm too lazy though, should be something like 00317 * for(i=0 ; i<bitamount/64 ; i++) 00318 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]); 00319 * Buffer alignment needs to be checked. */ 00320 00321 off = (intptr_t)inbuffer & 3; 00322 buf = (const uint32_t*) (inbuffer - off); 00323 c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8)))); 00324 bytes += 3 + off; 00325 for (i = 0; i < bytes/4; i++) 00326 obuf[i] = c ^ buf[i]; 00327 00328 return off; 00329 } 00330 00335 static av_cold int cook_decode_close(AVCodecContext *avctx) 00336 { 00337 int i; 00338 COOKContext *q = avctx->priv_data; 00339 av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n"); 00340 00341 /* Free allocated memory buffers. */ 00342 av_free(q->mlt_window); 00343 av_free(q->decoded_bytes_buffer); 00344 00345 /* Free the transform. */ 00346 ff_mdct_end(&q->mdct_ctx); 00347 00348 /* Free the VLC tables. */ 00349 for (i=0 ; i<13 ; i++) { 00350 free_vlc(&q->envelope_quant_index[i]); 00351 } 00352 for (i=0 ; i<7 ; i++) { 00353 free_vlc(&q->sqvh[i]); 00354 } 00355 for (i=0 ; i<q->num_subpackets ; i++) { 00356 free_vlc(&q->subpacket[i].ccpl); 00357 } 00358 00359 av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n"); 00360 00361 return 0; 00362 } 00363 00371 static void decode_gain_info(GetBitContext *gb, int *gaininfo) 00372 { 00373 int i, n; 00374 00375 while (get_bits1(gb)) {} 00376 n = get_bits_count(gb) - 1; //amount of elements*2 to update 00377 00378 i = 0; 00379 while (n--) { 00380 int index = get_bits(gb, 3); 00381 int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1; 00382 00383 while (i <= index) gaininfo[i++] = gain; 00384 } 00385 while (i <= 8) gaininfo[i++] = 0; 00386 } 00387 00395 static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) { 00396 int i,j, vlc_index; 00397 00398 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize 00399 00400 for (i=1 ; i < p->total_subbands ; i++){ 00401 vlc_index=i; 00402 if (i >= p->js_subband_start * 2) { 00403 vlc_index-=p->js_subband_start; 00404 } else { 00405 vlc_index/=2; 00406 if(vlc_index < 1) vlc_index = 1; 00407 } 00408 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13 00409 00410 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table, 00411 q->envelope_quant_index[vlc_index-1].bits,2); 00412 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding 00413 } 00414 } 00415 00425 static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table, 00426 int* category, int* category_index){ 00427 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j; 00428 int exp_index2[102]; 00429 int exp_index1[102]; 00430 00431 int tmp_categorize_array[128*2]; 00432 int tmp_categorize_array1_idx=p->numvector_size; 00433 int tmp_categorize_array2_idx=p->numvector_size; 00434 00435 bits_left = p->bits_per_subpacket - get_bits_count(&q->gb); 00436 00437 if(bits_left > q->samples_per_channel) { 00438 bits_left = q->samples_per_channel + 00439 ((bits_left - q->samples_per_channel)*5)/8; 00440 //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left); 00441 } 00442 00443 memset(&exp_index1,0,102*sizeof(int)); 00444 memset(&exp_index2,0,102*sizeof(int)); 00445 memset(&tmp_categorize_array,0,128*2*sizeof(int)); 00446 00447 bias=-32; 00448 00449 /* Estimate bias. */ 00450 for (i=32 ; i>0 ; i=i/2){ 00451 num_bits = 0; 00452 index = 0; 00453 for (j=p->total_subbands ; j>0 ; j--){ 00454 exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7); 00455 index++; 00456 num_bits+=expbits_tab[exp_idx]; 00457 } 00458 if(num_bits >= bits_left - 32){ 00459 bias+=i; 00460 } 00461 } 00462 00463 /* Calculate total number of bits. */ 00464 num_bits=0; 00465 for (i=0 ; i<p->total_subbands ; i++) { 00466 exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7); 00467 num_bits += expbits_tab[exp_idx]; 00468 exp_index1[i] = exp_idx; 00469 exp_index2[i] = exp_idx; 00470 } 00471 tmpbias1 = tmpbias2 = num_bits; 00472 00473 for (j = 1 ; j < p->numvector_size ; j++) { 00474 if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */ 00475 int max = -999999; 00476 index=-1; 00477 for (i=0 ; i<p->total_subbands ; i++){ 00478 if (exp_index1[i] < 7) { 00479 v = (-2*exp_index1[i]) - quant_index_table[i] + bias; 00480 if ( v >= max) { 00481 max = v; 00482 index = i; 00483 } 00484 } 00485 } 00486 if(index==-1)break; 00487 tmp_categorize_array[tmp_categorize_array1_idx++] = index; 00488 tmpbias1 -= expbits_tab[exp_index1[index]] - 00489 expbits_tab[exp_index1[index]+1]; 00490 ++exp_index1[index]; 00491 } else { /* <--- */ 00492 int min = 999999; 00493 index=-1; 00494 for (i=0 ; i<p->total_subbands ; i++){ 00495 if(exp_index2[i] > 0){ 00496 v = (-2*exp_index2[i])-quant_index_table[i]+bias; 00497 if ( v < min) { 00498 min = v; 00499 index = i; 00500 } 00501 } 00502 } 00503 if(index == -1)break; 00504 tmp_categorize_array[--tmp_categorize_array2_idx] = index; 00505 tmpbias2 -= expbits_tab[exp_index2[index]] - 00506 expbits_tab[exp_index2[index]-1]; 00507 --exp_index2[index]; 00508 } 00509 } 00510 00511 for(i=0 ; i<p->total_subbands ; i++) 00512 category[i] = exp_index2[i]; 00513 00514 for(i=0 ; i<p->numvector_size-1 ; i++) 00515 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++]; 00516 00517 } 00518 00519 00528 static inline void expand_category(COOKContext *q, int* category, 00529 int* category_index){ 00530 int i; 00531 for(i=0 ; i<q->num_vectors ; i++){ 00532 ++category[category_index[i]]; 00533 } 00534 } 00535 00547 static void scalar_dequant_float(COOKContext *q, int index, int quant_index, 00548 int* subband_coef_index, int* subband_coef_sign, 00549 float* mlt_p){ 00550 int i; 00551 float f1; 00552 00553 for(i=0 ; i<SUBBAND_SIZE ; i++) { 00554 if (subband_coef_index[i]) { 00555 f1 = quant_centroid_tab[index][subband_coef_index[i]]; 00556 if (subband_coef_sign[i]) f1 = -f1; 00557 } else { 00558 /* noise coding if subband_coef_index[i] == 0 */ 00559 f1 = dither_tab[index]; 00560 if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1; 00561 } 00562 mlt_p[i] = f1 * rootpow2tab[quant_index+63]; 00563 } 00564 } 00574 static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index, 00575 int* subband_coef_sign) { 00576 int i,j; 00577 int vlc, vd ,tmp, result; 00578 00579 vd = vd_tab[category]; 00580 result = 0; 00581 for(i=0 ; i<vpr_tab[category] ; i++){ 00582 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3); 00583 if (p->bits_per_subpacket < get_bits_count(&q->gb)){ 00584 vlc = 0; 00585 result = 1; 00586 } 00587 for(j=vd-1 ; j>=0 ; j--){ 00588 tmp = (vlc * invradix_tab[category])/0x100000; 00589 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1); 00590 vlc = tmp; 00591 } 00592 for(j=0 ; j<vd ; j++){ 00593 if (subband_coef_index[i*vd + j]) { 00594 if(get_bits_count(&q->gb) < p->bits_per_subpacket){ 00595 subband_coef_sign[i*vd+j] = get_bits1(&q->gb); 00596 } else { 00597 result=1; 00598 subband_coef_sign[i*vd+j]=0; 00599 } 00600 } else { 00601 subband_coef_sign[i*vd+j]=0; 00602 } 00603 } 00604 } 00605 return result; 00606 } 00607 00608 00619 static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category, 00620 int *quant_index_table, float* mlt_buffer){ 00621 /* A zero in this table means that the subband coefficient is 00622 random noise coded. */ 00623 int subband_coef_index[SUBBAND_SIZE]; 00624 /* A zero in this table means that the subband coefficient is a 00625 positive multiplicator. */ 00626 int subband_coef_sign[SUBBAND_SIZE]; 00627 int band, j; 00628 int index=0; 00629 00630 for(band=0 ; band<p->total_subbands ; band++){ 00631 index = category[band]; 00632 if(category[band] < 7){ 00633 if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){ 00634 index=7; 00635 for(j=0 ; j<p->total_subbands ; j++) category[band+j]=7; 00636 } 00637 } 00638 if(index>=7) { 00639 memset(subband_coef_index, 0, sizeof(subband_coef_index)); 00640 memset(subband_coef_sign, 0, sizeof(subband_coef_sign)); 00641 } 00642 q->scalar_dequant(q, index, quant_index_table[band], 00643 subband_coef_index, subband_coef_sign, 00644 &mlt_buffer[band * SUBBAND_SIZE]); 00645 } 00646 00647 if(p->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){ 00648 return; 00649 } /* FIXME: should this be removed, or moved into loop above? */ 00650 } 00651 00652 00660 static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) { 00661 00662 int category_index[128]; 00663 int quant_index_table[102]; 00664 int category[128]; 00665 00666 memset(&category, 0, 128*sizeof(int)); 00667 memset(&category_index, 0, 128*sizeof(int)); 00668 00669 decode_envelope(q, p, quant_index_table); 00670 q->num_vectors = get_bits(&q->gb,p->log2_numvector_size); 00671 categorize(q, p, quant_index_table, category, category_index); 00672 expand_category(q, category, category_index); 00673 decode_vectors(q, p, category, quant_index_table, mlt_buffer); 00674 } 00675 00676 00686 static void interpolate_float(COOKContext *q, float* buffer, 00687 int gain_index, int gain_index_next){ 00688 int i; 00689 float fc1, fc2; 00690 fc1 = pow2tab[gain_index+63]; 00691 00692 if(gain_index == gain_index_next){ //static gain 00693 for(i=0 ; i<q->gain_size_factor ; i++){ 00694 buffer[i]*=fc1; 00695 } 00696 return; 00697 } else { //smooth gain 00698 fc2 = q->gain_table[11 + (gain_index_next-gain_index)]; 00699 for(i=0 ; i<q->gain_size_factor ; i++){ 00700 buffer[i]*=fc1; 00701 fc1*=fc2; 00702 } 00703 return; 00704 } 00705 } 00706 00716 static void imlt_window_float (COOKContext *q, float *buffer1, 00717 cook_gains *gains_ptr, float *previous_buffer) 00718 { 00719 const float fc = pow2tab[gains_ptr->previous[0] + 63]; 00720 int i; 00721 /* The weird thing here, is that the two halves of the time domain 00722 * buffer are swapped. Also, the newest data, that we save away for 00723 * next frame, has the wrong sign. Hence the subtraction below. 00724 * Almost sounds like a complex conjugate/reverse data/FFT effect. 00725 */ 00726 00727 /* Apply window and overlap */ 00728 for(i = 0; i < q->samples_per_channel; i++){ 00729 buffer1[i] = buffer1[i] * fc * q->mlt_window[i] - 00730 previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i]; 00731 } 00732 } 00733 00746 static void imlt_gain(COOKContext *q, float *inbuffer, 00747 cook_gains *gains_ptr, float* previous_buffer) 00748 { 00749 float *buffer0 = q->mono_mdct_output; 00750 float *buffer1 = q->mono_mdct_output + q->samples_per_channel; 00751 int i; 00752 00753 /* Inverse modified discrete cosine transform */ 00754 ff_imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer); 00755 00756 q->imlt_window (q, buffer1, gains_ptr, previous_buffer); 00757 00758 /* Apply gain profile */ 00759 for (i = 0; i < 8; i++) { 00760 if (gains_ptr->now[i] || gains_ptr->now[i + 1]) 00761 q->interpolate(q, &buffer1[q->gain_size_factor * i], 00762 gains_ptr->now[i], gains_ptr->now[i + 1]); 00763 } 00764 00765 /* Save away the current to be previous block. */ 00766 memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel); 00767 } 00768 00769 00778 static void decouple_info(COOKContext *q, COOKSubpacket *p, int* decouple_tab){ 00779 int length, i; 00780 00781 if(get_bits1(&q->gb)) { 00782 if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return; 00783 00784 length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1; 00785 for (i=0 ; i<length ; i++) { 00786 decouple_tab[cplband[p->js_subband_start] + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2); 00787 } 00788 return; 00789 } 00790 00791 if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return; 00792 00793 length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1; 00794 for (i=0 ; i<length ; i++) { 00795 decouple_tab[cplband[p->js_subband_start] + i] = get_bits(&q->gb, p->js_vlc_bits); 00796 } 00797 return; 00798 } 00799 00800 /* 00801 * function decouples a pair of signals from a single signal via multiplication. 00802 * 00803 * @param q pointer to the COOKContext 00804 * @param subband index of the current subband 00805 * @param f1 multiplier for channel 1 extraction 00806 * @param f2 multiplier for channel 2 extraction 00807 * @param decode_buffer input buffer 00808 * @param mlt_buffer1 pointer to left channel mlt coefficients 00809 * @param mlt_buffer2 pointer to right channel mlt coefficients 00810 */ 00811 static void decouple_float (COOKContext *q, 00812 COOKSubpacket *p, 00813 int subband, 00814 float f1, float f2, 00815 float *decode_buffer, 00816 float *mlt_buffer1, float *mlt_buffer2) 00817 { 00818 int j, tmp_idx; 00819 for (j=0 ; j<SUBBAND_SIZE ; j++) { 00820 tmp_idx = ((p->js_subband_start + subband)*SUBBAND_SIZE)+j; 00821 mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx]; 00822 mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx]; 00823 } 00824 } 00825 00834 static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1, 00835 float* mlt_buffer2) { 00836 int i,j; 00837 int decouple_tab[SUBBAND_SIZE]; 00838 float *decode_buffer = q->decode_buffer_0; 00839 int idx, cpl_tmp; 00840 float f1,f2; 00841 const float* cplscale; 00842 00843 memset(decouple_tab, 0, sizeof(decouple_tab)); 00844 memset(decode_buffer, 0, sizeof(decode_buffer)); 00845 00846 /* Make sure the buffers are zeroed out. */ 00847 memset(mlt_buffer1,0, 1024*sizeof(float)); 00848 memset(mlt_buffer2,0, 1024*sizeof(float)); 00849 decouple_info(q, p, decouple_tab); 00850 mono_decode(q, p, decode_buffer); 00851 00852 /* The two channels are stored interleaved in decode_buffer. */ 00853 for (i=0 ; i<p->js_subband_start ; i++) { 00854 for (j=0 ; j<SUBBAND_SIZE ; j++) { 00855 mlt_buffer1[i*20+j] = decode_buffer[i*40+j]; 00856 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j]; 00857 } 00858 } 00859 00860 /* When we reach js_subband_start (the higher frequencies) 00861 the coefficients are stored in a coupling scheme. */ 00862 idx = (1 << p->js_vlc_bits) - 1; 00863 for (i=p->js_subband_start ; i<p->subbands ; i++) { 00864 cpl_tmp = cplband[i]; 00865 idx -=decouple_tab[cpl_tmp]; 00866 cplscale = q->cplscales[p->js_vlc_bits-2]; //choose decoupler table 00867 f1 = cplscale[decouple_tab[cpl_tmp]]; 00868 f2 = cplscale[idx-1]; 00869 q->decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2); 00870 idx = (1 << p->js_vlc_bits) - 1; 00871 } 00872 } 00873 00883 static inline void 00884 decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer, 00885 cook_gains *gains_ptr) 00886 { 00887 int offset; 00888 00889 offset = decode_bytes(inbuffer, q->decoded_bytes_buffer, 00890 p->bits_per_subpacket/8); 00891 init_get_bits(&q->gb, q->decoded_bytes_buffer + offset, 00892 p->bits_per_subpacket); 00893 decode_gain_info(&q->gb, gains_ptr->now); 00894 00895 /* Swap current and previous gains */ 00896 FFSWAP(int *, gains_ptr->now, gains_ptr->previous); 00897 } 00898 00906 static void 00907 saturate_output_float (COOKContext *q, int chan, int16_t *out) 00908 { 00909 int j; 00910 float *output = q->mono_mdct_output + q->samples_per_channel; 00911 /* Clip and convert floats to 16 bits. 00912 */ 00913 for (j = 0; j < q->samples_per_channel; j++) { 00914 out[chan + q->nb_channels * j] = 00915 av_clip_int16(lrintf(output[j])); 00916 } 00917 } 00918 00932 static inline void 00933 mlt_compensate_output(COOKContext *q, float *decode_buffer, 00934 cook_gains *gains, float *previous_buffer, 00935 int16_t *out, int chan) 00936 { 00937 imlt_gain(q, decode_buffer, gains, previous_buffer); 00938 q->saturate_output (q, chan, out); 00939 } 00940 00941 00953 static void decode_subpacket(COOKContext *q, COOKSubpacket* p, const uint8_t *inbuffer, int16_t *outbuffer) { 00954 int sub_packet_size = p->size; 00955 /* packet dump */ 00956 // for (i=0 ; i<sub_packet_size ; i++) { 00957 // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]); 00958 // } 00959 // av_log(q->avctx, AV_LOG_ERROR, "\n"); 00960 memset(q->decode_buffer_1,0,sizeof(q->decode_buffer_1)); 00961 decode_bytes_and_gain(q, p, inbuffer, &p->gains1); 00962 00963 if (p->joint_stereo) { 00964 joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2); 00965 } else { 00966 mono_decode(q, p, q->decode_buffer_1); 00967 00968 if (p->num_channels == 2) { 00969 decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p->gains2); 00970 mono_decode(q, p, q->decode_buffer_2); 00971 } 00972 } 00973 00974 mlt_compensate_output(q, q->decode_buffer_1, &p->gains1, 00975 p->mono_previous_buffer1, outbuffer, p->ch_idx); 00976 00977 if (p->num_channels == 2) { 00978 if (p->joint_stereo) { 00979 mlt_compensate_output(q, q->decode_buffer_2, &p->gains1, 00980 p->mono_previous_buffer2, outbuffer, p->ch_idx + 1); 00981 } else { 00982 mlt_compensate_output(q, q->decode_buffer_2, &p->gains2, 00983 p->mono_previous_buffer2, outbuffer, p->ch_idx + 1); 00984 } 00985 } 00986 00987 } 00988 00989 00996 static int cook_decode_frame(AVCodecContext *avctx, 00997 void *data, int *data_size, 00998 AVPacket *avpkt) { 00999 const uint8_t *buf = avpkt->data; 01000 int buf_size = avpkt->size; 01001 COOKContext *q = avctx->priv_data; 01002 int i; 01003 int offset = 0; 01004 int chidx = 0; 01005 01006 if (buf_size < avctx->block_align) 01007 return buf_size; 01008 01009 /* estimate subpacket sizes */ 01010 q->subpacket[0].size = avctx->block_align; 01011 01012 for(i=1;i<q->num_subpackets;i++){ 01013 q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i]; 01014 q->subpacket[0].size -= q->subpacket[i].size + 1; 01015 if (q->subpacket[0].size < 0) { 01016 av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx->block_align!\n"); 01017 return -1; 01018 } 01019 } 01020 01021 /* decode supbackets */ 01022 *data_size = 0; 01023 for(i=0;i<q->num_subpackets;i++){ 01024 q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size*8)>>q->subpacket[i].bits_per_subpdiv; 01025 q->subpacket[i].ch_idx = chidx; 01026 av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q->subpacket[i].size,q->subpacket[i].joint_stereo,offset,avctx->block_align); 01027 decode_subpacket(q, &q->subpacket[i], buf + offset, (int16_t*)data); 01028 offset += q->subpacket[i].size; 01029 chidx += q->subpacket[i].num_channels; 01030 av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q->subpacket[i].size * 8,get_bits_count(&q->gb)); 01031 } 01032 *data_size = sizeof(int16_t) * q->nb_channels * q->samples_per_channel; 01033 01034 /* Discard the first two frames: no valid audio. */ 01035 if (avctx->frame_number < 2) *data_size = 0; 01036 01037 return avctx->block_align; 01038 } 01039 01040 #ifdef COOKDEBUG 01041 static void dump_cook_context(COOKContext *q) 01042 { 01043 //int i=0; 01044 #define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b); 01045 av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n"); 01046 av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->subpacket[0].cookversion); 01047 if (q->subpacket[0].cookversion > STEREO) { 01048 PRINT("js_subband_start",q->subpacket[0].js_subband_start); 01049 PRINT("js_vlc_bits",q->subpacket[0].js_vlc_bits); 01050 } 01051 av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n"); 01052 PRINT("nb_channels",q->nb_channels); 01053 PRINT("bit_rate",q->bit_rate); 01054 PRINT("sample_rate",q->sample_rate); 01055 PRINT("samples_per_channel",q->subpacket[0].samples_per_channel); 01056 PRINT("samples_per_frame",q->subpacket[0].samples_per_frame); 01057 PRINT("subbands",q->subpacket[0].subbands); 01058 PRINT("random_state",q->random_state); 01059 PRINT("js_subband_start",q->subpacket[0].js_subband_start); 01060 PRINT("log2_numvector_size",q->subpacket[0].log2_numvector_size); 01061 PRINT("numvector_size",q->subpacket[0].numvector_size); 01062 PRINT("total_subbands",q->subpacket[0].total_subbands); 01063 } 01064 #endif 01065 01066 static av_cold int cook_count_channels(unsigned int mask){ 01067 int i; 01068 int channels = 0; 01069 for(i = 0;i<32;i++){ 01070 if(mask & (1<<i)) 01071 ++channels; 01072 } 01073 return channels; 01074 } 01075 01082 static av_cold int cook_decode_init(AVCodecContext *avctx) 01083 { 01084 COOKContext *q = avctx->priv_data; 01085 const uint8_t *edata_ptr = avctx->extradata; 01086 const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size; 01087 int extradata_size = avctx->extradata_size; 01088 int s = 0; 01089 unsigned int channel_mask = 0; 01090 q->avctx = avctx; 01091 01092 /* Take care of the codec specific extradata. */ 01093 if (extradata_size <= 0) { 01094 av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n"); 01095 return -1; 01096 } 01097 av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size); 01098 01099 /* Take data from the AVCodecContext (RM container). */ 01100 q->sample_rate = avctx->sample_rate; 01101 q->nb_channels = avctx->channels; 01102 q->bit_rate = avctx->bit_rate; 01103 01104 /* Initialize RNG. */ 01105 av_lfg_init(&q->random_state, 0); 01106 01107 while(edata_ptr < edata_ptr_end){ 01108 /* 8 for mono, 16 for stereo, ? for multichannel 01109 Swap to right endianness so we don't need to care later on. */ 01110 if (extradata_size >= 8){ 01111 q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr); 01112 q->subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr); 01113 q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr); 01114 extradata_size -= 8; 01115 } 01116 if (avctx->extradata_size >= 8){ 01117 bytestream_get_be32(&edata_ptr); //Unknown unused 01118 q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr); 01119 q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr); 01120 extradata_size -= 8; 01121 } 01122 01123 /* Initialize extradata related variables. */ 01124 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels; 01125 q->subpacket[s].bits_per_subpacket = avctx->block_align * 8; 01126 01127 /* Initialize default data states. */ 01128 q->subpacket[s].log2_numvector_size = 5; 01129 q->subpacket[s].total_subbands = q->subpacket[s].subbands; 01130 q->subpacket[s].num_channels = 1; 01131 01132 /* Initialize version-dependent variables */ 01133 01134 av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q->subpacket[s].cookversion); 01135 q->subpacket[s].joint_stereo = 0; 01136 switch (q->subpacket[s].cookversion) { 01137 case MONO: 01138 if (q->nb_channels != 1) { 01139 av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n"); 01140 return -1; 01141 } 01142 av_log(avctx,AV_LOG_DEBUG,"MONO\n"); 01143 break; 01144 case STEREO: 01145 if (q->nb_channels != 1) { 01146 q->subpacket[s].bits_per_subpdiv = 1; 01147 q->subpacket[s].num_channels = 2; 01148 } 01149 av_log(avctx,AV_LOG_DEBUG,"STEREO\n"); 01150 break; 01151 case JOINT_STEREO: 01152 if (q->nb_channels != 2) { 01153 av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n"); 01154 return -1; 01155 } 01156 av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n"); 01157 if (avctx->extradata_size >= 16){ 01158 q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start; 01159 q->subpacket[s].joint_stereo = 1; 01160 q->subpacket[s].num_channels = 2; 01161 } 01162 if (q->subpacket[s].samples_per_channel > 256) { 01163 q->subpacket[s].log2_numvector_size = 6; 01164 } 01165 if (q->subpacket[s].samples_per_channel > 512) { 01166 q->subpacket[s].log2_numvector_size = 7; 01167 } 01168 break; 01169 case MC_COOK: 01170 av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n"); 01171 if(extradata_size >= 4) 01172 channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr); 01173 01174 if(cook_count_channels(q->subpacket[s].channel_mask) > 1){ 01175 q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start; 01176 q->subpacket[s].joint_stereo = 1; 01177 q->subpacket[s].num_channels = 2; 01178 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1; 01179 01180 if (q->subpacket[s].samples_per_channel > 256) { 01181 q->subpacket[s].log2_numvector_size = 6; 01182 } 01183 if (q->subpacket[s].samples_per_channel > 512) { 01184 q->subpacket[s].log2_numvector_size = 7; 01185 } 01186 }else 01187 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame; 01188 01189 break; 01190 default: 01191 av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n"); 01192 return -1; 01193 break; 01194 } 01195 01196 if(s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) { 01197 av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n"); 01198 return -1; 01199 } else 01200 q->samples_per_channel = q->subpacket[0].samples_per_channel; 01201 01202 01203 /* Initialize variable relations */ 01204 q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size); 01205 01206 /* Try to catch some obviously faulty streams, othervise it might be exploitable */ 01207 if (q->subpacket[s].total_subbands > 53) { 01208 av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n"); 01209 return -1; 01210 } 01211 01212 if ((q->subpacket[s].js_vlc_bits > 6) || (q->subpacket[s].js_vlc_bits < 0)) { 01213 av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->subpacket[s].js_vlc_bits); 01214 return -1; 01215 } 01216 01217 if (q->subpacket[s].subbands > 50) { 01218 av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n"); 01219 return -1; 01220 } 01221 q->subpacket[s].gains1.now = q->subpacket[s].gain_1; 01222 q->subpacket[s].gains1.previous = q->subpacket[s].gain_2; 01223 q->subpacket[s].gains2.now = q->subpacket[s].gain_3; 01224 q->subpacket[s].gains2.previous = q->subpacket[s].gain_4; 01225 01226 q->num_subpackets++; 01227 s++; 01228 if (s > MAX_SUBPACKETS) { 01229 av_log(avctx,AV_LOG_ERROR,"Too many subpackets > 5, report file!\n"); 01230 return -1; 01231 } 01232 } 01233 /* Generate tables */ 01234 init_pow2table(); 01235 init_gain_table(q); 01236 init_cplscales_table(q); 01237 01238 if (init_cook_vlc_tables(q) != 0) 01239 return -1; 01240 01241 01242 if(avctx->block_align >= UINT_MAX/2) 01243 return -1; 01244 01245 /* Pad the databuffer with: 01246 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(), 01247 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */ 01248 q->decoded_bytes_buffer = 01249 av_mallocz(avctx->block_align 01250 + DECODE_BYTES_PAD1(avctx->block_align) 01251 + FF_INPUT_BUFFER_PADDING_SIZE); 01252 if (q->decoded_bytes_buffer == NULL) 01253 return -1; 01254 01255 /* Initialize transform. */ 01256 if ( init_cook_mlt(q) != 0 ) 01257 return -1; 01258 01259 /* Initialize COOK signal arithmetic handling */ 01260 if (1) { 01261 q->scalar_dequant = scalar_dequant_float; 01262 q->decouple = decouple_float; 01263 q->imlt_window = imlt_window_float; 01264 q->interpolate = interpolate_float; 01265 q->saturate_output = saturate_output_float; 01266 } 01267 01268 /* Try to catch some obviously faulty streams, othervise it might be exploitable */ 01269 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) { 01270 } else { 01271 av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel); 01272 return -1; 01273 } 01274 01275 avctx->sample_fmt = SAMPLE_FMT_S16; 01276 if (channel_mask) 01277 avctx->channel_layout = channel_mask; 01278 else 01279 avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO; 01280 01281 #ifdef COOKDEBUG 01282 dump_cook_context(q); 01283 #endif 01284 return 0; 01285 } 01286 01287 01288 AVCodec cook_decoder = 01289 { 01290 .name = "cook", 01291 .type = AVMEDIA_TYPE_AUDIO, 01292 .id = CODEC_ID_COOK, 01293 .priv_data_size = sizeof(COOKContext), 01294 .init = cook_decode_init, 01295 .close = cook_decode_close, 01296 .decode = cook_decode_frame, 01297 .long_name = NULL_IF_CONFIG_SMALL("COOK"), 01298 };