Libav
|
00001 /* 00002 * Duck TrueMotion 1.0 Decoder 00003 * Copyright (C) 2003 Alex Beregszaszi & Mike Melanson 00004 * 00005 * This file is part of FFmpeg. 00006 * 00007 * FFmpeg is free software; you can redistribute it and/or 00008 * modify it under the terms of the GNU Lesser General Public 00009 * License as published by the Free Software Foundation; either 00010 * version 2.1 of the License, or (at your option) any later version. 00011 * 00012 * FFmpeg is distributed in the hope that it will be useful, 00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00015 * Lesser General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU Lesser General Public 00018 * License along with FFmpeg; if not, write to the Free Software 00019 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00020 */ 00021 00032 #include <stdio.h> 00033 #include <stdlib.h> 00034 #include <string.h> 00035 00036 #include "avcodec.h" 00037 #include "dsputil.h" 00038 00039 #include "truemotion1data.h" 00040 00041 typedef struct TrueMotion1Context { 00042 AVCodecContext *avctx; 00043 AVFrame frame; 00044 00045 const uint8_t *buf; 00046 int size; 00047 00048 const uint8_t *mb_change_bits; 00049 int mb_change_bits_row_size; 00050 const uint8_t *index_stream; 00051 int index_stream_size; 00052 00053 int flags; 00054 int x, y, w, h; 00055 00056 uint32_t y_predictor_table[1024]; 00057 uint32_t c_predictor_table[1024]; 00058 uint32_t fat_y_predictor_table[1024]; 00059 uint32_t fat_c_predictor_table[1024]; 00060 00061 int compression; 00062 int block_type; 00063 int block_width; 00064 int block_height; 00065 00066 int16_t ydt[8]; 00067 int16_t cdt[8]; 00068 int16_t fat_ydt[8]; 00069 int16_t fat_cdt[8]; 00070 00071 int last_deltaset, last_vectable; 00072 00073 unsigned int *vert_pred; 00074 00075 } TrueMotion1Context; 00076 00077 #define FLAG_SPRITE 32 00078 #define FLAG_KEYFRAME 16 00079 #define FLAG_INTERFRAME 8 00080 #define FLAG_INTERPOLATED 4 00081 00082 struct frame_header { 00083 uint8_t header_size; 00084 uint8_t compression; 00085 uint8_t deltaset; 00086 uint8_t vectable; 00087 uint16_t ysize; 00088 uint16_t xsize; 00089 uint16_t checksum; 00090 uint8_t version; 00091 uint8_t header_type; 00092 uint8_t flags; 00093 uint8_t control; 00094 uint16_t xoffset; 00095 uint16_t yoffset; 00096 uint16_t width; 00097 uint16_t height; 00098 }; 00099 00100 #define ALGO_NOP 0 00101 #define ALGO_RGB16V 1 00102 #define ALGO_RGB16H 2 00103 #define ALGO_RGB24H 3 00104 00105 /* these are the various block sizes that can occupy a 4x4 block */ 00106 #define BLOCK_2x2 0 00107 #define BLOCK_2x4 1 00108 #define BLOCK_4x2 2 00109 #define BLOCK_4x4 3 00110 00111 typedef struct comp_types { 00112 int algorithm; 00113 int block_width; // vres 00114 int block_height; // hres 00115 int block_type; 00116 } comp_types; 00117 00118 /* { valid for metatype }, algorithm, num of deltas, vert res, horiz res */ 00119 static const comp_types compression_types[17] = { 00120 { ALGO_NOP, 0, 0, 0 }, 00121 00122 { ALGO_RGB16V, 4, 4, BLOCK_4x4 }, 00123 { ALGO_RGB16H, 4, 4, BLOCK_4x4 }, 00124 { ALGO_RGB16V, 4, 2, BLOCK_4x2 }, 00125 { ALGO_RGB16H, 4, 2, BLOCK_4x2 }, 00126 00127 { ALGO_RGB16V, 2, 4, BLOCK_2x4 }, 00128 { ALGO_RGB16H, 2, 4, BLOCK_2x4 }, 00129 { ALGO_RGB16V, 2, 2, BLOCK_2x2 }, 00130 { ALGO_RGB16H, 2, 2, BLOCK_2x2 }, 00131 00132 { ALGO_NOP, 4, 4, BLOCK_4x4 }, 00133 { ALGO_RGB24H, 4, 4, BLOCK_4x4 }, 00134 { ALGO_NOP, 4, 2, BLOCK_4x2 }, 00135 { ALGO_RGB24H, 4, 2, BLOCK_4x2 }, 00136 00137 { ALGO_NOP, 2, 4, BLOCK_2x4 }, 00138 { ALGO_RGB24H, 2, 4, BLOCK_2x4 }, 00139 { ALGO_NOP, 2, 2, BLOCK_2x2 }, 00140 { ALGO_RGB24H, 2, 2, BLOCK_2x2 } 00141 }; 00142 00143 static void select_delta_tables(TrueMotion1Context *s, int delta_table_index) 00144 { 00145 int i; 00146 00147 if (delta_table_index > 3) 00148 return; 00149 00150 memcpy(s->ydt, ydts[delta_table_index], 8 * sizeof(int16_t)); 00151 memcpy(s->cdt, cdts[delta_table_index], 8 * sizeof(int16_t)); 00152 memcpy(s->fat_ydt, fat_ydts[delta_table_index], 8 * sizeof(int16_t)); 00153 memcpy(s->fat_cdt, fat_cdts[delta_table_index], 8 * sizeof(int16_t)); 00154 00155 /* Y skinny deltas need to be halved for some reason; maybe the 00156 * skinny Y deltas should be modified */ 00157 for (i = 0; i < 8; i++) 00158 { 00159 /* drop the lsb before dividing by 2-- net effect: round down 00160 * when dividing a negative number (e.g., -3/2 = -2, not -1) */ 00161 s->ydt[i] &= 0xFFFE; 00162 s->ydt[i] /= 2; 00163 } 00164 } 00165 00166 #if HAVE_BIGENDIAN 00167 static int make_ydt15_entry(int p2, int p1, int16_t *ydt) 00168 #else 00169 static int make_ydt15_entry(int p1, int p2, int16_t *ydt) 00170 #endif 00171 { 00172 int lo, hi; 00173 00174 lo = ydt[p1]; 00175 lo += (lo << 5) + (lo << 10); 00176 hi = ydt[p2]; 00177 hi += (hi << 5) + (hi << 10); 00178 return (lo + (hi << 16)) << 1; 00179 } 00180 00181 #if HAVE_BIGENDIAN 00182 static int make_cdt15_entry(int p2, int p1, int16_t *cdt) 00183 #else 00184 static int make_cdt15_entry(int p1, int p2, int16_t *cdt) 00185 #endif 00186 { 00187 int r, b, lo; 00188 00189 b = cdt[p2]; 00190 r = cdt[p1] << 10; 00191 lo = b + r; 00192 return (lo + (lo << 16)) << 1; 00193 } 00194 00195 #if HAVE_BIGENDIAN 00196 static int make_ydt16_entry(int p2, int p1, int16_t *ydt) 00197 #else 00198 static int make_ydt16_entry(int p1, int p2, int16_t *ydt) 00199 #endif 00200 { 00201 int lo, hi; 00202 00203 lo = ydt[p1]; 00204 lo += (lo << 6) + (lo << 11); 00205 hi = ydt[p2]; 00206 hi += (hi << 6) + (hi << 11); 00207 return (lo + (hi << 16)) << 1; 00208 } 00209 00210 #if HAVE_BIGENDIAN 00211 static int make_cdt16_entry(int p2, int p1, int16_t *cdt) 00212 #else 00213 static int make_cdt16_entry(int p1, int p2, int16_t *cdt) 00214 #endif 00215 { 00216 int r, b, lo; 00217 00218 b = cdt[p2]; 00219 r = cdt[p1] << 11; 00220 lo = b + r; 00221 return (lo + (lo << 16)) << 1; 00222 } 00223 00224 #if HAVE_BIGENDIAN 00225 static int make_ydt24_entry(int p2, int p1, int16_t *ydt) 00226 #else 00227 static int make_ydt24_entry(int p1, int p2, int16_t *ydt) 00228 #endif 00229 { 00230 int lo, hi; 00231 00232 lo = ydt[p1]; 00233 hi = ydt[p2]; 00234 return (lo + (hi << 8) + (hi << 16)) << 1; 00235 } 00236 00237 #if HAVE_BIGENDIAN 00238 static int make_cdt24_entry(int p2, int p1, int16_t *cdt) 00239 #else 00240 static int make_cdt24_entry(int p1, int p2, int16_t *cdt) 00241 #endif 00242 { 00243 int r, b; 00244 00245 b = cdt[p2]; 00246 r = cdt[p1]<<16; 00247 return (b+r) << 1; 00248 } 00249 00250 static void gen_vector_table15(TrueMotion1Context *s, const uint8_t *sel_vector_table) 00251 { 00252 int len, i, j; 00253 unsigned char delta_pair; 00254 00255 for (i = 0; i < 1024; i += 4) 00256 { 00257 len = *sel_vector_table++ / 2; 00258 for (j = 0; j < len; j++) 00259 { 00260 delta_pair = *sel_vector_table++; 00261 s->y_predictor_table[i+j] = 0xfffffffe & 00262 make_ydt15_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt); 00263 s->c_predictor_table[i+j] = 0xfffffffe & 00264 make_cdt15_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt); 00265 } 00266 s->y_predictor_table[i+(j-1)] |= 1; 00267 s->c_predictor_table[i+(j-1)] |= 1; 00268 } 00269 } 00270 00271 static void gen_vector_table16(TrueMotion1Context *s, const uint8_t *sel_vector_table) 00272 { 00273 int len, i, j; 00274 unsigned char delta_pair; 00275 00276 for (i = 0; i < 1024; i += 4) 00277 { 00278 len = *sel_vector_table++ / 2; 00279 for (j = 0; j < len; j++) 00280 { 00281 delta_pair = *sel_vector_table++; 00282 s->y_predictor_table[i+j] = 0xfffffffe & 00283 make_ydt16_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt); 00284 s->c_predictor_table[i+j] = 0xfffffffe & 00285 make_cdt16_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt); 00286 } 00287 s->y_predictor_table[i+(j-1)] |= 1; 00288 s->c_predictor_table[i+(j-1)] |= 1; 00289 } 00290 } 00291 00292 static void gen_vector_table24(TrueMotion1Context *s, const uint8_t *sel_vector_table) 00293 { 00294 int len, i, j; 00295 unsigned char delta_pair; 00296 00297 for (i = 0; i < 1024; i += 4) 00298 { 00299 len = *sel_vector_table++ / 2; 00300 for (j = 0; j < len; j++) 00301 { 00302 delta_pair = *sel_vector_table++; 00303 s->y_predictor_table[i+j] = 0xfffffffe & 00304 make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt); 00305 s->c_predictor_table[i+j] = 0xfffffffe & 00306 make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt); 00307 s->fat_y_predictor_table[i+j] = 0xfffffffe & 00308 make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_ydt); 00309 s->fat_c_predictor_table[i+j] = 0xfffffffe & 00310 make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_cdt); 00311 } 00312 s->y_predictor_table[i+(j-1)] |= 1; 00313 s->c_predictor_table[i+(j-1)] |= 1; 00314 s->fat_y_predictor_table[i+(j-1)] |= 1; 00315 s->fat_c_predictor_table[i+(j-1)] |= 1; 00316 } 00317 } 00318 00319 /* Returns the number of bytes consumed from the bytestream. Returns -1 if 00320 * there was an error while decoding the header */ 00321 static int truemotion1_decode_header(TrueMotion1Context *s) 00322 { 00323 int i; 00324 struct frame_header header; 00325 uint8_t header_buffer[128]; /* logical maximum size of the header */ 00326 const uint8_t *sel_vector_table; 00327 00328 /* There is 1 change bit per 4 pixels, so each change byte represents 00329 * 32 pixels; divide width by 4 to obtain the number of change bits and 00330 * then round up to the nearest byte. */ 00331 s->mb_change_bits_row_size = ((s->avctx->width >> 2) + 7) >> 3; 00332 00333 header.header_size = ((s->buf[0] >> 5) | (s->buf[0] << 3)) & 0x7f; 00334 if (s->buf[0] < 0x10) 00335 { 00336 av_log(s->avctx, AV_LOG_ERROR, "invalid header size (%d)\n", s->buf[0]); 00337 return -1; 00338 } 00339 00340 /* unscramble the header bytes with a XOR operation */ 00341 memset(header_buffer, 0, 128); 00342 for (i = 1; i < header.header_size; i++) 00343 header_buffer[i - 1] = s->buf[i] ^ s->buf[i + 1]; 00344 00345 header.compression = header_buffer[0]; 00346 header.deltaset = header_buffer[1]; 00347 header.vectable = header_buffer[2]; 00348 header.ysize = AV_RL16(&header_buffer[3]); 00349 header.xsize = AV_RL16(&header_buffer[5]); 00350 header.checksum = AV_RL16(&header_buffer[7]); 00351 header.version = header_buffer[9]; 00352 header.header_type = header_buffer[10]; 00353 header.flags = header_buffer[11]; 00354 header.control = header_buffer[12]; 00355 00356 /* Version 2 */ 00357 if (header.version >= 2) 00358 { 00359 if (header.header_type > 3) 00360 { 00361 av_log(s->avctx, AV_LOG_ERROR, "invalid header type (%d)\n", header.header_type); 00362 return -1; 00363 } else if ((header.header_type == 2) || (header.header_type == 3)) { 00364 s->flags = header.flags; 00365 if (!(s->flags & FLAG_INTERFRAME)) 00366 s->flags |= FLAG_KEYFRAME; 00367 } else 00368 s->flags = FLAG_KEYFRAME; 00369 } else /* Version 1 */ 00370 s->flags = FLAG_KEYFRAME; 00371 00372 if (s->flags & FLAG_SPRITE) { 00373 av_log(s->avctx, AV_LOG_INFO, "SPRITE frame found, please report the sample to the developers\n"); 00374 /* FIXME header.width, height, xoffset and yoffset aren't initialized */ 00375 #if 0 00376 s->w = header.width; 00377 s->h = header.height; 00378 s->x = header.xoffset; 00379 s->y = header.yoffset; 00380 #else 00381 return -1; 00382 #endif 00383 } else { 00384 s->w = header.xsize; 00385 s->h = header.ysize; 00386 if (header.header_type < 2) { 00387 if ((s->w < 213) && (s->h >= 176)) 00388 { 00389 s->flags |= FLAG_INTERPOLATED; 00390 av_log(s->avctx, AV_LOG_INFO, "INTERPOLATION selected, please report the sample to the developers\n"); 00391 } 00392 } 00393 } 00394 00395 if (header.compression >= 17) { 00396 av_log(s->avctx, AV_LOG_ERROR, "invalid compression type (%d)\n", header.compression); 00397 return -1; 00398 } 00399 00400 if ((header.deltaset != s->last_deltaset) || 00401 (header.vectable != s->last_vectable)) 00402 select_delta_tables(s, header.deltaset); 00403 00404 if ((header.compression & 1) && header.header_type) 00405 sel_vector_table = pc_tbl2; 00406 else { 00407 if (header.vectable < 4) 00408 sel_vector_table = tables[header.vectable - 1]; 00409 else { 00410 av_log(s->avctx, AV_LOG_ERROR, "invalid vector table id (%d)\n", header.vectable); 00411 return -1; 00412 } 00413 } 00414 00415 // FIXME: where to place this ?!?! 00416 if (compression_types[header.compression].algorithm == ALGO_RGB24H) 00417 s->avctx->pix_fmt = PIX_FMT_RGB32; 00418 else 00419 s->avctx->pix_fmt = PIX_FMT_RGB555; // RGB565 is supported as well 00420 00421 if ((header.deltaset != s->last_deltaset) || (header.vectable != s->last_vectable)) 00422 { 00423 if (compression_types[header.compression].algorithm == ALGO_RGB24H) 00424 gen_vector_table24(s, sel_vector_table); 00425 else 00426 if (s->avctx->pix_fmt == PIX_FMT_RGB555) 00427 gen_vector_table15(s, sel_vector_table); 00428 else 00429 gen_vector_table16(s, sel_vector_table); 00430 } 00431 00432 /* set up pointers to the other key data chunks */ 00433 s->mb_change_bits = s->buf + header.header_size; 00434 if (s->flags & FLAG_KEYFRAME) { 00435 /* no change bits specified for a keyframe; only index bytes */ 00436 s->index_stream = s->mb_change_bits; 00437 } else { 00438 /* one change bit per 4x4 block */ 00439 s->index_stream = s->mb_change_bits + 00440 (s->mb_change_bits_row_size * (s->avctx->height >> 2)); 00441 } 00442 s->index_stream_size = s->size - (s->index_stream - s->buf); 00443 00444 s->last_deltaset = header.deltaset; 00445 s->last_vectable = header.vectable; 00446 s->compression = header.compression; 00447 s->block_width = compression_types[header.compression].block_width; 00448 s->block_height = compression_types[header.compression].block_height; 00449 s->block_type = compression_types[header.compression].block_type; 00450 00451 if (s->avctx->debug & FF_DEBUG_PICT_INFO) 00452 av_log(s->avctx, AV_LOG_INFO, "tables: %d / %d c:%d %dx%d t:%d %s%s%s%s\n", 00453 s->last_deltaset, s->last_vectable, s->compression, s->block_width, 00454 s->block_height, s->block_type, 00455 s->flags & FLAG_KEYFRAME ? " KEY" : "", 00456 s->flags & FLAG_INTERFRAME ? " INTER" : "", 00457 s->flags & FLAG_SPRITE ? " SPRITE" : "", 00458 s->flags & FLAG_INTERPOLATED ? " INTERPOL" : ""); 00459 00460 return header.header_size; 00461 } 00462 00463 static av_cold int truemotion1_decode_init(AVCodecContext *avctx) 00464 { 00465 TrueMotion1Context *s = avctx->priv_data; 00466 00467 s->avctx = avctx; 00468 00469 // FIXME: it may change ? 00470 // if (avctx->bits_per_sample == 24) 00471 // avctx->pix_fmt = PIX_FMT_RGB24; 00472 // else 00473 // avctx->pix_fmt = PIX_FMT_RGB555; 00474 00475 s->frame.data[0] = NULL; 00476 00477 /* there is a vertical predictor for each pixel in a line; each vertical 00478 * predictor is 0 to start with */ 00479 s->vert_pred = 00480 (unsigned int *)av_malloc(s->avctx->width * sizeof(unsigned int)); 00481 00482 return 0; 00483 } 00484 00485 /* 00486 Block decoding order: 00487 00488 dxi: Y-Y 00489 dxic: Y-C-Y 00490 dxic2: Y-C-Y-C 00491 00492 hres,vres,i,i%vres (0 < i < 4) 00493 2x2 0: 0 dxic2 00494 2x2 1: 1 dxi 00495 2x2 2: 0 dxic2 00496 2x2 3: 1 dxi 00497 2x4 0: 0 dxic2 00498 2x4 1: 1 dxi 00499 2x4 2: 2 dxi 00500 2x4 3: 3 dxi 00501 4x2 0: 0 dxic 00502 4x2 1: 1 dxi 00503 4x2 2: 0 dxic 00504 4x2 3: 1 dxi 00505 4x4 0: 0 dxic 00506 4x4 1: 1 dxi 00507 4x4 2: 2 dxi 00508 4x4 3: 3 dxi 00509 */ 00510 00511 #define GET_NEXT_INDEX() \ 00512 {\ 00513 if (index_stream_index >= s->index_stream_size) { \ 00514 av_log(s->avctx, AV_LOG_INFO, " help! truemotion1 decoder went out of bounds\n"); \ 00515 return; \ 00516 } \ 00517 index = s->index_stream[index_stream_index++] * 4; \ 00518 } 00519 00520 #define APPLY_C_PREDICTOR() \ 00521 predictor_pair = s->c_predictor_table[index]; \ 00522 horiz_pred += (predictor_pair >> 1); \ 00523 if (predictor_pair & 1) { \ 00524 GET_NEXT_INDEX() \ 00525 if (!index) { \ 00526 GET_NEXT_INDEX() \ 00527 predictor_pair = s->c_predictor_table[index]; \ 00528 horiz_pred += ((predictor_pair >> 1) * 5); \ 00529 if (predictor_pair & 1) \ 00530 GET_NEXT_INDEX() \ 00531 else \ 00532 index++; \ 00533 } \ 00534 } else \ 00535 index++; 00536 00537 #define APPLY_C_PREDICTOR_24() \ 00538 predictor_pair = s->c_predictor_table[index]; \ 00539 horiz_pred += (predictor_pair >> 1); \ 00540 if (predictor_pair & 1) { \ 00541 GET_NEXT_INDEX() \ 00542 if (!index) { \ 00543 GET_NEXT_INDEX() \ 00544 predictor_pair = s->fat_c_predictor_table[index]; \ 00545 horiz_pred += (predictor_pair >> 1); \ 00546 if (predictor_pair & 1) \ 00547 GET_NEXT_INDEX() \ 00548 else \ 00549 index++; \ 00550 } \ 00551 } else \ 00552 index++; 00553 00554 00555 #define APPLY_Y_PREDICTOR() \ 00556 predictor_pair = s->y_predictor_table[index]; \ 00557 horiz_pred += (predictor_pair >> 1); \ 00558 if (predictor_pair & 1) { \ 00559 GET_NEXT_INDEX() \ 00560 if (!index) { \ 00561 GET_NEXT_INDEX() \ 00562 predictor_pair = s->y_predictor_table[index]; \ 00563 horiz_pred += ((predictor_pair >> 1) * 5); \ 00564 if (predictor_pair & 1) \ 00565 GET_NEXT_INDEX() \ 00566 else \ 00567 index++; \ 00568 } \ 00569 } else \ 00570 index++; 00571 00572 #define APPLY_Y_PREDICTOR_24() \ 00573 predictor_pair = s->y_predictor_table[index]; \ 00574 horiz_pred += (predictor_pair >> 1); \ 00575 if (predictor_pair & 1) { \ 00576 GET_NEXT_INDEX() \ 00577 if (!index) { \ 00578 GET_NEXT_INDEX() \ 00579 predictor_pair = s->fat_y_predictor_table[index]; \ 00580 horiz_pred += (predictor_pair >> 1); \ 00581 if (predictor_pair & 1) \ 00582 GET_NEXT_INDEX() \ 00583 else \ 00584 index++; \ 00585 } \ 00586 } else \ 00587 index++; 00588 00589 #define OUTPUT_PIXEL_PAIR() \ 00590 *current_pixel_pair = *vert_pred + horiz_pred; \ 00591 *vert_pred++ = *current_pixel_pair++; 00592 00593 static void truemotion1_decode_16bit(TrueMotion1Context *s) 00594 { 00595 int y; 00596 int pixels_left; /* remaining pixels on this line */ 00597 unsigned int predictor_pair; 00598 unsigned int horiz_pred; 00599 unsigned int *vert_pred; 00600 unsigned int *current_pixel_pair; 00601 unsigned char *current_line = s->frame.data[0]; 00602 int keyframe = s->flags & FLAG_KEYFRAME; 00603 00604 /* these variables are for managing the stream of macroblock change bits */ 00605 const unsigned char *mb_change_bits = s->mb_change_bits; 00606 unsigned char mb_change_byte; 00607 unsigned char mb_change_byte_mask; 00608 int mb_change_index; 00609 00610 /* these variables are for managing the main index stream */ 00611 int index_stream_index = 0; /* yes, the index into the index stream */ 00612 int index; 00613 00614 /* clean out the line buffer */ 00615 memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int)); 00616 00617 GET_NEXT_INDEX(); 00618 00619 for (y = 0; y < s->avctx->height; y++) { 00620 00621 /* re-init variables for the next line iteration */ 00622 horiz_pred = 0; 00623 current_pixel_pair = (unsigned int *)current_line; 00624 vert_pred = s->vert_pred; 00625 mb_change_index = 0; 00626 mb_change_byte = mb_change_bits[mb_change_index++]; 00627 mb_change_byte_mask = 0x01; 00628 pixels_left = s->avctx->width; 00629 00630 while (pixels_left > 0) { 00631 00632 if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) { 00633 00634 switch (y & 3) { 00635 case 0: 00636 /* if macroblock width is 2, apply C-Y-C-Y; else 00637 * apply C-Y-Y */ 00638 if (s->block_width == 2) { 00639 APPLY_C_PREDICTOR(); 00640 APPLY_Y_PREDICTOR(); 00641 OUTPUT_PIXEL_PAIR(); 00642 APPLY_C_PREDICTOR(); 00643 APPLY_Y_PREDICTOR(); 00644 OUTPUT_PIXEL_PAIR(); 00645 } else { 00646 APPLY_C_PREDICTOR(); 00647 APPLY_Y_PREDICTOR(); 00648 OUTPUT_PIXEL_PAIR(); 00649 APPLY_Y_PREDICTOR(); 00650 OUTPUT_PIXEL_PAIR(); 00651 } 00652 break; 00653 00654 case 1: 00655 case 3: 00656 /* always apply 2 Y predictors on these iterations */ 00657 APPLY_Y_PREDICTOR(); 00658 OUTPUT_PIXEL_PAIR(); 00659 APPLY_Y_PREDICTOR(); 00660 OUTPUT_PIXEL_PAIR(); 00661 break; 00662 00663 case 2: 00664 /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y 00665 * depending on the macroblock type */ 00666 if (s->block_type == BLOCK_2x2) { 00667 APPLY_C_PREDICTOR(); 00668 APPLY_Y_PREDICTOR(); 00669 OUTPUT_PIXEL_PAIR(); 00670 APPLY_C_PREDICTOR(); 00671 APPLY_Y_PREDICTOR(); 00672 OUTPUT_PIXEL_PAIR(); 00673 } else if (s->block_type == BLOCK_4x2) { 00674 APPLY_C_PREDICTOR(); 00675 APPLY_Y_PREDICTOR(); 00676 OUTPUT_PIXEL_PAIR(); 00677 APPLY_Y_PREDICTOR(); 00678 OUTPUT_PIXEL_PAIR(); 00679 } else { 00680 APPLY_Y_PREDICTOR(); 00681 OUTPUT_PIXEL_PAIR(); 00682 APPLY_Y_PREDICTOR(); 00683 OUTPUT_PIXEL_PAIR(); 00684 } 00685 break; 00686 } 00687 00688 } else { 00689 00690 /* skip (copy) four pixels, but reassign the horizontal 00691 * predictor */ 00692 *vert_pred++ = *current_pixel_pair++; 00693 horiz_pred = *current_pixel_pair - *vert_pred; 00694 *vert_pred++ = *current_pixel_pair++; 00695 00696 } 00697 00698 if (!keyframe) { 00699 mb_change_byte_mask <<= 1; 00700 00701 /* next byte */ 00702 if (!mb_change_byte_mask) { 00703 mb_change_byte = mb_change_bits[mb_change_index++]; 00704 mb_change_byte_mask = 0x01; 00705 } 00706 } 00707 00708 pixels_left -= 4; 00709 } 00710 00711 /* next change row */ 00712 if (((y + 1) & 3) == 0) 00713 mb_change_bits += s->mb_change_bits_row_size; 00714 00715 current_line += s->frame.linesize[0]; 00716 } 00717 } 00718 00719 static void truemotion1_decode_24bit(TrueMotion1Context *s) 00720 { 00721 int y; 00722 int pixels_left; /* remaining pixels on this line */ 00723 unsigned int predictor_pair; 00724 unsigned int horiz_pred; 00725 unsigned int *vert_pred; 00726 unsigned int *current_pixel_pair; 00727 unsigned char *current_line = s->frame.data[0]; 00728 int keyframe = s->flags & FLAG_KEYFRAME; 00729 00730 /* these variables are for managing the stream of macroblock change bits */ 00731 const unsigned char *mb_change_bits = s->mb_change_bits; 00732 unsigned char mb_change_byte; 00733 unsigned char mb_change_byte_mask; 00734 int mb_change_index; 00735 00736 /* these variables are for managing the main index stream */ 00737 int index_stream_index = 0; /* yes, the index into the index stream */ 00738 int index; 00739 00740 /* clean out the line buffer */ 00741 memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int)); 00742 00743 GET_NEXT_INDEX(); 00744 00745 for (y = 0; y < s->avctx->height; y++) { 00746 00747 /* re-init variables for the next line iteration */ 00748 horiz_pred = 0; 00749 current_pixel_pair = (unsigned int *)current_line; 00750 vert_pred = s->vert_pred; 00751 mb_change_index = 0; 00752 mb_change_byte = mb_change_bits[mb_change_index++]; 00753 mb_change_byte_mask = 0x01; 00754 pixels_left = s->avctx->width; 00755 00756 while (pixels_left > 0) { 00757 00758 if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) { 00759 00760 switch (y & 3) { 00761 case 0: 00762 /* if macroblock width is 2, apply C-Y-C-Y; else 00763 * apply C-Y-Y */ 00764 if (s->block_width == 2) { 00765 APPLY_C_PREDICTOR_24(); 00766 APPLY_Y_PREDICTOR_24(); 00767 OUTPUT_PIXEL_PAIR(); 00768 APPLY_C_PREDICTOR_24(); 00769 APPLY_Y_PREDICTOR_24(); 00770 OUTPUT_PIXEL_PAIR(); 00771 } else { 00772 APPLY_C_PREDICTOR_24(); 00773 APPLY_Y_PREDICTOR_24(); 00774 OUTPUT_PIXEL_PAIR(); 00775 APPLY_Y_PREDICTOR_24(); 00776 OUTPUT_PIXEL_PAIR(); 00777 } 00778 break; 00779 00780 case 1: 00781 case 3: 00782 /* always apply 2 Y predictors on these iterations */ 00783 APPLY_Y_PREDICTOR_24(); 00784 OUTPUT_PIXEL_PAIR(); 00785 APPLY_Y_PREDICTOR_24(); 00786 OUTPUT_PIXEL_PAIR(); 00787 break; 00788 00789 case 2: 00790 /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y 00791 * depending on the macroblock type */ 00792 if (s->block_type == BLOCK_2x2) { 00793 APPLY_C_PREDICTOR_24(); 00794 APPLY_Y_PREDICTOR_24(); 00795 OUTPUT_PIXEL_PAIR(); 00796 APPLY_C_PREDICTOR_24(); 00797 APPLY_Y_PREDICTOR_24(); 00798 OUTPUT_PIXEL_PAIR(); 00799 } else if (s->block_type == BLOCK_4x2) { 00800 APPLY_C_PREDICTOR_24(); 00801 APPLY_Y_PREDICTOR_24(); 00802 OUTPUT_PIXEL_PAIR(); 00803 APPLY_Y_PREDICTOR_24(); 00804 OUTPUT_PIXEL_PAIR(); 00805 } else { 00806 APPLY_Y_PREDICTOR_24(); 00807 OUTPUT_PIXEL_PAIR(); 00808 APPLY_Y_PREDICTOR_24(); 00809 OUTPUT_PIXEL_PAIR(); 00810 } 00811 break; 00812 } 00813 00814 } else { 00815 00816 /* skip (copy) four pixels, but reassign the horizontal 00817 * predictor */ 00818 *vert_pred++ = *current_pixel_pair++; 00819 horiz_pred = *current_pixel_pair - *vert_pred; 00820 *vert_pred++ = *current_pixel_pair++; 00821 00822 } 00823 00824 if (!keyframe) { 00825 mb_change_byte_mask <<= 1; 00826 00827 /* next byte */ 00828 if (!mb_change_byte_mask) { 00829 mb_change_byte = mb_change_bits[mb_change_index++]; 00830 mb_change_byte_mask = 0x01; 00831 } 00832 } 00833 00834 pixels_left -= 4; 00835 } 00836 00837 /* next change row */ 00838 if (((y + 1) & 3) == 0) 00839 mb_change_bits += s->mb_change_bits_row_size; 00840 00841 current_line += s->frame.linesize[0]; 00842 } 00843 } 00844 00845 00846 static int truemotion1_decode_frame(AVCodecContext *avctx, 00847 void *data, int *data_size, 00848 AVPacket *avpkt) 00849 { 00850 const uint8_t *buf = avpkt->data; 00851 int buf_size = avpkt->size; 00852 TrueMotion1Context *s = avctx->priv_data; 00853 00854 s->buf = buf; 00855 s->size = buf_size; 00856 00857 if (truemotion1_decode_header(s) == -1) 00858 return -1; 00859 00860 s->frame.reference = 1; 00861 s->frame.buffer_hints = FF_BUFFER_HINTS_VALID | 00862 FF_BUFFER_HINTS_PRESERVE | FF_BUFFER_HINTS_REUSABLE; 00863 if (avctx->reget_buffer(avctx, &s->frame) < 0) { 00864 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n"); 00865 return -1; 00866 } 00867 00868 if (compression_types[s->compression].algorithm == ALGO_RGB24H) { 00869 truemotion1_decode_24bit(s); 00870 } else if (compression_types[s->compression].algorithm != ALGO_NOP) { 00871 truemotion1_decode_16bit(s); 00872 } 00873 00874 *data_size = sizeof(AVFrame); 00875 *(AVFrame*)data = s->frame; 00876 00877 /* report that the buffer was completely consumed */ 00878 return buf_size; 00879 } 00880 00881 static av_cold int truemotion1_decode_end(AVCodecContext *avctx) 00882 { 00883 TrueMotion1Context *s = avctx->priv_data; 00884 00885 if (s->frame.data[0]) 00886 avctx->release_buffer(avctx, &s->frame); 00887 00888 av_free(s->vert_pred); 00889 00890 return 0; 00891 } 00892 00893 AVCodec truemotion1_decoder = { 00894 "truemotion1", 00895 AVMEDIA_TYPE_VIDEO, 00896 CODEC_ID_TRUEMOTION1, 00897 sizeof(TrueMotion1Context), 00898 truemotion1_decode_init, 00899 NULL, 00900 truemotion1_decode_end, 00901 truemotion1_decode_frame, 00902 CODEC_CAP_DR1, 00903 .long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 1.0"), 00904 };