114 SUBROUTINE zptts2( IUPLO, N, NRHS, D, E, B, LDB )
122 INTEGER iuplo, ldb, n, nrhs
125 DOUBLE PRECISION d( * )
126 COMPLEX*16 b( ldb, * ), e( * )
146 $ CALL
zdscal( nrhs, 1.d0 / d( 1 ),
b, ldb )
150 IF( iuplo.EQ.1 )
THEN
162 b( i,
j ) =
b( i,
j ) -
b( i-1,
j )*dconjg( e( i-1 ) )
168 b( i,
j ) =
b( i,
j ) / d( i )
170 DO 40 i = n - 1, 1, -1
171 b( i,
j ) =
b( i,
j ) -
b( i+1,
j )*e( i )
183 b( i,
j ) =
b( i,
j ) -
b( i-1,
j )*dconjg( e( i-1 ) )
188 b( n,
j ) =
b( n,
j ) / d( n )
189 DO 60 i = n - 1, 1, -1
190 b( i,
j ) =
b( i,
j ) / d( i ) -
b( i+1,
j )*e( i )
206 b( i,
j ) =
b( i,
j ) -
b( i-1,
j )*e( i-1 )
212 b( i,
j ) =
b( i,
j ) / d( i )
214 DO 110 i = n - 1, 1, -1
215 b( i,
j ) =
b( i,
j ) -
b( i+1,
j )*dconjg( e( i ) )
227 b( i,
j ) =
b( i,
j ) -
b( i-1,
j )*e( i-1 )
232 b( n,
j ) =
b( n,
j ) / d( n )
233 DO 130 i = n - 1, 1, -1
234 b( i,
j ) =
b( i,
j ) / d( i ) -
235 $
b( i+1,
j )*dconjg( e( i ) )
subroutine zdscal(N, DA, ZX, INCX)
ZDSCAL
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real b(3) integer i
subroutine zptts2(IUPLO, N, NRHS, D, E, B, LDB)
ZPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf...
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real j