LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
clqt02.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine clqt02 (M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 CLQT02 More...
 

Function/Subroutine Documentation

subroutine clqt02 ( integer  M,
integer  N,
integer  K,
complex, dimension( lda, * )  A,
complex, dimension( lda, * )  AF,
complex, dimension( lda, * )  Q,
complex, dimension( lda, * )  L,
integer  LDA,
complex, dimension( * )  TAU,
complex, dimension( lwork )  WORK,
integer  LWORK,
real, dimension( * )  RWORK,
real, dimension( * )  RESULT 
)

CLQT02

Purpose:
 CLQT02 tests CUNGLQ, which generates an m-by-n matrix Q with
 orthonornmal rows that is defined as the product of k elementary
 reflectors.

 Given the LQ factorization of an m-by-n matrix A, CLQT02 generates
 the orthogonal matrix Q defined by the factorization of the first k
 rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and
 checks that the rows of Q are orthonormal.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix Q to be generated.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix Q to be generated.
          N >= M >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. M >= K >= 0.
[in]A
          A is COMPLEX array, dimension (LDA,N)
          The m-by-n matrix A which was factorized by CLQT01.
[in]AF
          AF is COMPLEX array, dimension (LDA,N)
          Details of the LQ factorization of A, as returned by CGELQF.
          See CGELQF for further details.
[out]Q
          Q is COMPLEX array, dimension (LDA,N)
[out]L
          L is COMPLEX array, dimension (LDA,M)
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays A, AF, Q and L. LDA >= N.
[in]TAU
          TAU is COMPLEX array, dimension (M)
          The scalar factors of the elementary reflectors corresponding
          to the LQ factorization in AF.
[out]WORK
          WORK is COMPLEX array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
[out]RWORK
          RWORK is REAL array, dimension (M)
[out]RESULT
          RESULT is REAL array, dimension (2)
          The test ratios:
          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 135 of file clqt02.f.

Here is the call graph for this function:

Here is the caller graph for this function: